气相流约束调控微细水射流的数值仿真

郭春海 张文武 茹浩磊

郭春海, 张文武, 茹浩磊. 气相流约束调控微细水射流的数值仿真[J]. 高压物理学报, 2017, 31(5): 585-592. doi: 10.11858/gywlxb.2017.05.012
引用本文: 郭春海, 张文武, 茹浩磊. 气相流约束调控微细水射流的数值仿真[J]. 高压物理学报, 2017, 31(5): 585-592. doi: 10.11858/gywlxb.2017.05.012
GUO Chun-Hai, ZHANG Wen-Wu, RU Hao-Lei. Numerical Simulation of High Pressure Micro Water Jet Modulation with the Constraint of Gas Flow[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 585-592. doi: 10.11858/gywlxb.2017.05.012
Citation: GUO Chun-Hai, ZHANG Wen-Wu, RU Hao-Lei. Numerical Simulation of High Pressure Micro Water Jet Modulation with the Constraint of Gas Flow[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 585-592. doi: 10.11858/gywlxb.2017.05.012

气相流约束调控微细水射流的数值仿真

doi: 10.11858/gywlxb.2017.05.012
基金项目: 

宁波市自然科学基金 2015A610095

宁波市自然科学基金 2015A610106

详细信息
    作者简介:

    郭春海(1980—),男,博士,高级工程师,主要从事计算流体力学及数值传热学研究.E-mail:guochunhai@nimte.ac.cn

  • 中图分类号: O357.1

Numerical Simulation of High Pressure Micro Water Jet Modulation with the Constraint of Gas Flow

  • 摘要: 针对高压微细水射流的喷嘴磨损严重和分辨率很难进一步提高的问题,给出了一种新的射流方案,即气相流约束调控下的微细水射流。通过数值模拟的方法,对该射流方案的射流过程进行研究,并得到了气相流约束下微细水射流的流场分布。研究结果表明,该射流方案是可行的,能有效地减小射流喷嘴的磨损,以及进一步提高微细水射流的分辨率。

     

  • 图  射流结构示意图

    Figure  1.  Jet structure

    图  网格划分图

    Figure  2.  Grid partition

    图  t=0.9 ms时的速度云图

    Figure  3.  Velocity contour at t=0.9 ms

    图  t=0.9 ms时速度变化曲线

    Figure  4.  Velocity varies with position at t=0.9 ms

    图  t=0.9 ms时压力云图线

    Figure  5.  Pressure contour at t=0.9 ms

    图  收缩段的压力变化曲线

    Figure  6.  Variation of pressure in the contraction section

    图  不同时刻两相的体积分布

    Figure  7.  Volume distribution of two phases at different times

    图  微喷嘴内出口位置水的体积分数

    Figure  8.  Volume fraction of water in the outlet of the micro nozzle

    图  稳定状态气、水两相的体积分布

    Figure  9.  Volume distribution of gas and water in the steady state

    图  10  速度随压力的变化曲线

    Figure  10.  Variation of velocity with pressure

  • [1] 赵春红, 秦现生.高压水射流切割技术及其应用[J].机床与液压, 2006(2):1-3. doi: 10.3969/j.issn.1001-3881.2006.02.001

    ZHAO C H, QIN X S.High pressure water jet cutting technology and its application [J].Machine Tool and Hydraulics, 2006(2):1-3. doi: 10.3969/j.issn.1001-3881.2006.02.001
    [2] 张振, 章巧芳.高压喷嘴的射流仿真研究[J].机电工程, 2013, 30(2):185-187. http://d.old.wanfangdata.com.cn/Periodical/jdgc201302015

    ZHANG Z, ZHANG Q F.Study on jet simulation of high pressure nozzle[J].Journal of Mechanical and Electrical Engineering, 2013, 30(2):185-187. http://d.old.wanfangdata.com.cn/Periodical/jdgc201302015
    [3] BYRAN E L.High energy jet as a new concept for wood machining[J].Forest Prod J, 1963, 13(8):305-312.
    [4] SHANMUGAM D K, CHEN F L, SIORES E, et al.Comparative study of jetting machining technologies over laser machining technology for cutting composite materials [J].Compos Struct, 2002, 57(1):289-296. doi: 10.1016-S0263-8223(02)00096-X/
    [5] ARLEO F, ANNONI M, BASHA A, et al.Analysis of the effects of droplets collisions on the stability of a pure water jet by means of 3D numerical simulations[C]//10th AITEM Conference.Naples, Italy, 2011.
    [6] ANNONI M, ARLEO F, MALMASSARI C.CFD aided design and experimental validation of an innovative air assisted pure water jet cutting system [J].J Mater Proc Tech, 2014, 214(8):1647-1657. doi: 10.1016/j.jmatprotec.2014.01.020
    [7] BASHA A, ANNONI M, MONNO M, et al.Investigation of the hydrodynamic characteristics of AWJ cutting head [J].Int J Mach Mach Mater, 2013, 14(1):105-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f15e0bb5da7b23915425f5123fa3440f
    [8] ZOHOURKARI I, ZOHOOR M, ANNONI M.Investigation of the effects of machining parameters on material removal rate in abrasive waterjet turning [J].Adv Mechan Eng, 2014, 35(1):110-121. http://cn.bing.com/academic/profile?id=0b1a54b34e914ab8db1d5ac2a635ca77&encoded=0&v=paper_preview&mkt=zh-cn
    [9] OH T M, CHO G C.Characterization of effective parameters in abrasive waterjet rock cutting [J].Rock Mechan Rock Eng, 2014, 47(2):745-756. doi: 10.1007/s00603-013-0434-3
    [10] 胡贵华, 俞涛, 刘小健.前混合磨料水射流喷嘴内液固两相流的数值模拟[J].机电一体化, 2005, 11(6):20-23. doi: 10.3969/j.issn.1007-080X.2005.06.004

    HU G H, YU T, LIU X J.The numerical simulation of two phase flow about the liquid and solid in nozzle of DIA jet[J].Mechatroni, 2005, 11(6):20-23. doi: 10.3969/j.issn.1007-080X.2005.06.004
    [11] 熊佳, 雷玉勇, 杨志峰, 等.基于FLUENT的磨料水射流喷嘴内流场的可视化研究[J].润滑与密封, 2008, 33(6):51-55. doi: 10.3969/j.issn.0254-0150.2008.06.014

    XIONG J, LEI Y Y, YANG Z F, et al.Visual research of flow field in the nozzle of abrasive water jet based on FLUENT[J].Lubrication Engineering, 2008, 33(6):51-55. doi: 10.3969/j.issn.0254-0150.2008.06.014
    [12] 候荣国.磨料水射流切割性能和喷嘴内外流场的仿真研究[D].济南: 山东大学, 2006.

    HOU R G.Study on the cutting performance of abrasive water jet and simulation of the velocity inside and outside the nozzle [D].Jinan: Shandong University, 2006.
    [13] 杨敏官, 王育立, 康灿, 等.微型超高压宝石喷嘴内部的空化与磨损[J].高压物理学报, 2010, 24(4):286-292. http://www.gywlxb.cn/CN/abstract/abstract768.shtml

    YANG M G, WANG Y L, KANG C, et al.Cavitation and wear in the micro jewel nozzle of ultra-high pressure water jet [J].Chinese Journal of High Pressure Physics, 2010, 24(4):286-292. http://www.gywlxb.cn/CN/abstract/abstract768.shtml
    [14] 刘伟, 李火坤, 刘成梅, 等.基于FLUENT的动态高压微射流内部孔道流场的数值模拟[J].高压物理学报, 2012, 26(1):113-120. http://www.gywlxb.cn/CN/abstract/abstract1433.shtml

    LIU W, LI H K, LIU C M, et al.Numerical simulation of microchannel of dynamic high-pressure microfluidization based on FLUENT[J].Chinese Journal of High Pressure Physics, 2012, 26(1):113-120. http://www.gywlxb.cn/CN/abstract/abstract1433.shtml
  • 加载中
图(10)
计量
  • 文章访问数:  7399
  • HTML全文浏览量:  2964
  • PDF下载量:  148
出版历程
  • 收稿日期:  2016-11-01
  • 修回日期:  2017-01-12

目录

    /

    返回文章
    返回