俄罗斯红松的应变率效应及吸能特性

赵帅 赵建新 韩国柱

赵帅, 赵建新, 韩国柱. 俄罗斯红松的应变率效应及吸能特性[J]. 高压物理学报, 2017, 31(3): 271-279. doi: 10.11858/gywlxb.2017.03.008
引用本文: 赵帅, 赵建新, 韩国柱. 俄罗斯红松的应变率效应及吸能特性[J]. 高压物理学报, 2017, 31(3): 271-279. doi: 10.11858/gywlxb.2017.03.008
ZHAO Shuai, ZHAO Jian-Xin, HAN Guo-Zhu. Strain Rate Effect and Energy Absorption Characteristics of Russian Pine[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 271-279. doi: 10.11858/gywlxb.2017.03.008
Citation: ZHAO Shuai, ZHAO Jian-Xin, HAN Guo-Zhu. Strain Rate Effect and Energy Absorption Characteristics of Russian Pine[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 271-279. doi: 10.11858/gywlxb.2017.03.008

俄罗斯红松的应变率效应及吸能特性

doi: 10.11858/gywlxb.2017.03.008
基金项目: 军内科研项目
详细信息
    作者简介:

    赵帅(1991-), 男, 硕士研究生, 主要从事固体力学研究.E-mail:zhaoshuai462300@126.com

    通讯作者:

    韩国柱(1960-), 男, 博士, 硕士生导师, 主要从事武器系统研究.E-mail:jxzs163@163.com

  • 中图分类号: O347.3

Strain Rate Effect and Energy Absorption Characteristics of Russian Pine

  • 摘要: 针对广泛应用于包装运输和侵彻试验等工程领域的俄罗斯红松,实验研究了其在准静态载荷下的应力-应变关系和破坏模式。结果表明:俄罗斯红松在弦向和径向的变形均经历弹性变形、塑性变形和密实化3个阶段,而轴向在达到屈服极限后经历较小的塑性变形,然后发生破坏失效;弦向和径向破坏以沿纤维方向解离为主,而轴向破坏以扭结破碎为主。采用分离式霍普金森压杆装置,在500~5 000 s-1的应变率范围内对俄罗斯红松进行了高应变率动态压缩实验。结果表明:与弦向和径向相比,轴向初始屈服应力对应变率更敏感;随着应变率的升高,径向平台应力比弦向增加得更快;弦向和径向的吸能能力随应变率的增加逐渐提高,而轴向则逐渐下降;动态载荷下的破坏模式与准静态载荷下的破坏模式具有较高的相似性。

     

  • 图  试样的3个加载方向

    Figure  1.  Three loading directions of sample

    图  准静态轴向压缩结果

    Figure  2.  Results of quasi-static axial compression

    图  准静态径向压缩结果

    Figure  3.  Results of quasi-static radial compression

    图  准静态弦向压缩结果

    Figure  4.  Results of quasi-static tangential compression

    图  木材的微观结构

    Figure  5.  Microstructure of wood

    图  SHPB实验装置示意图

    Figure  6.  Schematic view of SHPB experimental system

    图  俄罗斯红松的原始波形

    Figure  7.  Original waveforms of Russian pine

    图  应力平衡图

    Figure  8.  Stress equilibrium

    图  不同应变率下正交3向的应力-应变曲线

    Figure  9.  Stress-strain curves at different strain rates in 3 orthogonal directions

    图  10  试样经不同应变率压缩后的破坏情况

    Figure  10.  Damages of specimens compressed at different strain rates

    图  11  初始屈服应力随应变率的变化

    Figure  11.  Initial yield stress vs.strain rate

    图  12  平台应力随应变率的变化

    Figure  12.  Plateau stress vs.strain rate

    图  13  吸能能力随应变率的变化

    Figure  13.  Energy absorption capacity vs.strain rate

    表  1  轴向SHPB实验数据

    Table  1.   SHPB experimental data along axial direction

    No. l0/(mm) d0/(mm) pa/(MPa) v/(m/s) ${{{\dot{\varepsilon }}}_{\text{ave}}}$/(s-1)
    LS-1-1 5.14 11.00 0.17 5.9 557
    L-1-1 5.16 10.90 0.17 5.6 575
    L-1-2 5.12 11.00 0.17 7.1 804
    L-1-3 5.20 11.02 0.17 9.8 1404
    L-2-1 5.18 11.00 0.17 12.6 1918
    L-2-2 5.14 10.90 0.17 15.2 2670
    L-2-3 5.10 10.92 0.17 17.3 3091
    L-3-1 5.12 11.02 0.22 20.8 3750
    L-3-2 5.30 10.98 0.26 22.7 4025
    L-3-3 5.24 11.04 0.32 25.1 4635
    下载: 导出CSV
  • [1] DA SILVA A, KYRIAKIDES S.Compressive response and failure of balsa wood[J].Int J Solids Struct, 2007, 44(25):8685-8717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35bd84d27b92e5a1ea746cfda24aa785
    [2] GALICKI J, CZECH M.Tensile strength of softwood in LR orthotropy plane[J].Mech Mater, 2005, 37(6):677-686. doi: 10.1016/j.mechmat.2004.07.001
    [3] OUDJENE M, KHELIFA M.Elasto-plastic constitutive law for wood behaviour under compressive loadings[J].Constr Build Mater, 2009, 23(11):3359-3366. doi: 10.1016/j.conbuildmat.2009.06.034
    [4] BENABOU L.Kink band formation in wood species under compressive loading[J].Exp Mech, 2007, 48(5):647-656. doi: 10.1007/s11340-007-9098-9
    [5] ZHONG W Z, HUANG X C, HAO Z M, et al.Investigation on failure mode of spruce under different loading conditions[J].Appl Mech Mater, 2011, 80:556-560. http://www.scientific.net/AMM.80-81.556
    [6] AL-SALLOUM Y, ALMUSALLAM T, IBRAHIM S M, et al.Rate dependent behavior and modeling of concrete based on SHPB experiments[J].Cem Concr Compos, 2015, 55:34-44. doi: 10.1016/j.cemconcomp.2014.07.011
    [7] 王少恒, 杨震琦, 管公顺, 等.空心球/铝合金复合材料动态压缩性能与损伤破碎特性[J].高压物理学报, 2013, 27(3):439-446. http://www.gywlxb.cn/CN/abstract/abstract1588.shtml

    WANG S H, YANG Z Q, GUAN G S, et al.Dynamic compression and damage pattern of hollow microsphere/aluminum alloy composites[J].Chinese Journal of High Pressure Physics, 2013, 27(3):439-446. http://www.gywlxb.cn/CN/abstract/abstract1588.shtml
    [8] 窦金龙, 汪旭光, 刘云川.杨木的动态力学性能[J].爆炸与冲击, 2008, 28(4):367-371. doi: 10.3321/j.issn:1001-1455.2008.04.014

    DOU J L, WANG X G, LIU Y C.Dynamic mechanical behaviors of poplar wood[J].Explosion and Shock Waves, 2008, 28(4):367-371. doi: 10.3321/j.issn:1001-1455.2008.04.014
    [9] 许威, 花军, 张绍群, 等.基于SHPB试验的桦木压缩动力学特性[J].林业科学, 2015, 51(5):95-101. http://d.old.wanfangdata.com.cn/Periodical/lykx201505011

    XU W, HUA J, ZHANG S Q, et al.Research on dynamic compression characteristics of birch wood based on SHPB test [J].Scientia Silvae Sinicae, 2015, 51(5):96-101. http://d.old.wanfangdata.com.cn/Periodical/lykx201505011
    [10] 钟卫洲, 宋顺成, 黄西成, 等.三种加载方向下云杉静动态力学性能研究[J].力学学报, 2011, 43(6):1141-1150. http://d.old.wanfangdata.com.cn/Conference/7500448

    ZHONG W Z, SONG S C, HUANG X C, et al.Research on static and dynamic mechanical properties of spruce wood by three loading directions[J]. Chinese Journal of Theoretical & Applied Mechanics, 2011, 43(6):1141-1150. http://d.old.wanfangdata.com.cn/Conference/7500448
    [11] WIDEHAMMAR S.Stress-strain relationships for spruce wood:influence of strain rate, moisture content and loading direction[J].Exp Mech, 2004, 44(1):44-48. doi: 10.1007/BF02427975
    [12] VURAL M, RAVICHANDRAN G.Dynamic response and energy dissipation characteristics of balsa wood:experiment and analysis[J].Int J Solids Struct, 2003, 40(9):2147-2170. doi: 10.1016/S0020-7683(03)00057-X
    [13] PUCHI-CABRERA E S.Simple constitutive description of Al-5·5Mg alloy deformed at elevated temperatures and strain rates[J].Mater Sci Technol, 2006, 22(6):699-705. doi: 10.1179/174328406X86137
    [14] TABARSA T, YINGHEI C.Stress-strain response of wood under radial compression.Part Ⅰ.test method and influences of cellular properties[J].Wood Fiber Sci, 2000, 32(2):144-152. http://www.cabdirect.org/abstracts/20000610039.html
    [15] TAN P J, REID S R, HARRIGAN J J, et al.Dynamic compressive strength properties of aluminium foams.Part Ⅰ-experimental data and observations[J].J Mech Phys Solids, 2005, 53(10):2174-2205. doi: 10.1016/j.jmps.2005.05.007
    [16] WOUTS J, HAUGOU G, OUDJENE M, et al.Strain rate effects on the compressive response of wood and energy absorption capabilities.Part A:experimental investigations[J].Compos Struct, 2016, 149:315-328. doi: 10.1016/j.compstruct.2016.03.058
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  5670
  • HTML全文浏览量:  2593
  • PDF下载量:  49
出版历程
  • 收稿日期:  2016-07-06
  • 修回日期:  2016-10-12

目录

    /

    返回文章
    返回