爆炸冲击作用下铝蜂窝板失稳研究

杨森 冯凇 王顺尧 何中其

杨森, 冯凇, 王顺尧, 何中其. 爆炸冲击作用下铝蜂窝板失稳研究[J]. 高压物理学报, 2017, 31(2): 193-201. doi: 10.11858/gywlxb.2017.02.013
引用本文: 杨森, 冯凇, 王顺尧, 何中其. 爆炸冲击作用下铝蜂窝板失稳研究[J]. 高压物理学报, 2017, 31(2): 193-201. doi: 10.11858/gywlxb.2017.02.013
YANG Sen, FENG Song, WANG Shun-Yao, HE Zhong-Qi. Instability of Aluminum Honeycomb Sandwich Panelunder Blast Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 193-201. doi: 10.11858/gywlxb.2017.02.013
Citation: YANG Sen, FENG Song, WANG Shun-Yao, HE Zhong-Qi. Instability of Aluminum Honeycomb Sandwich Panelunder Blast Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 193-201. doi: 10.11858/gywlxb.2017.02.013

爆炸冲击作用下铝蜂窝板失稳研究

doi: 10.11858/gywlxb.2017.02.013
详细信息
    作者简介:

    杨森(1987—), 男, 硕士研究生, 主要从事爆炸安全防护研究. E-mail: 15312761595@163.com

    通讯作者:

    何中其(1978—), 男, 讲师, 主要从事爆炸作用及应用、安全技术工程研究. E-mail: hzq555@163.com

  • 中图分类号: O347.5

Instability of Aluminum Honeycomb Sandwich Panelunder Blast Loading

  • 摘要: 基于非线性动力学软件AUTODYN,对铝蜂窝夹芯板在爆炸冲击载荷作用下的失稳过程进行三维数值模拟。通过建立不同参数规格的铝蜂窝夹芯板的实体模型,研究其前、后面板在TNT爆炸冲击作用下的动态响应及塑性阶段的失稳变形。计算结果表明:随着铝蜂窝板前、后面板厚度,夹芯层铝箔高度和厚度的增加,铝蜂窝板在爆炸冲击载荷下的最终残余变形量均明显减小,抵抗变形的能力增强;对于夹芯层胞元形状不同但相对密度相同的铝蜂窝板,因冲击载荷下单轴压缩“惯性效应”差异较小,其面板在爆炸载荷作用下的最终残余变形量差异不大。

     

  • 图  后面板最终形变量-载荷冲量曲线的实验和模拟结果

    Figure  1.  Experiment and simulation results of permanent deformation-impulse curves of back sheet

    图  铝蜂窝板结构

    Figure  2.  Structure of aluminum honeycomb

    图  机车铝蜂窝夹芯板

    Figure  3.  Locomotive with honeycomb sandwich panel

    图  模型与网格

    Figure  4.  Model and grid

    图  爆炸冲击下铝蜂窝压溃变形过程

    Figure  5.  Compression deformation of aluminum honeycomb under blast loading

    图  前、后面板中心位置的速度以及变形量

    Figure  6.  Velocities and displacements at center of front and back sheets

    图  测量点1~6处前、后面板的应变随时间变化

    Figure  7.  Face strain-time histories of gauge 1-6

    图  面板最大残余变形量

    Figure  8.  Maximum residual deflection of front and back sheets

    图  不同胞元形状铝蜂窝面板的最终变形量

    Figure  9.  Residual deflection of aluminum honeycomb panel with different cell shapes

    表  1  铝蜂窝板材料参数

    Table  1.   Material parameters of aluminum honeycomb panel

    Material Elastic modulus/(GPa) Shear modulus/(GPa) Poisson ratio Yield strength/(MPa) Failure strain
    Al-2024 72.4 28 0.3 75 0.1
    下载: 导出CSV

    表  2  TNT炸药的材料参数

    Table  2.   Material parameters of TNT explosive

    ρTNT/(g/cm3) A/(GPa) B/(GPa) R1 R2 ω vC-J/(km/s) EC-J/(GJ/m3) pC-J/(GPa)
    1.63 373.77 3.75 4.15 0.90 0.35 6.93 6 21
    下载: 导出CSV

    表  3  空气参数

    Table  3.   Material parameters of air

    ρg/(kg/m3) eg/(kJ/g) γ
    1.225 206.8 1.4
    下载: 导出CSV

    表  4  Al-5083H116本构方程参数

    Table  4.   Constitutive equation parameters of Al-5083H116

    ρAl/(g/cm3) νAl Am/(MPa) Bm/(MPa) n Cm Tm/(K) εf
    2.7 0.3 290 596 0.551 0.001 893 0.1
    下载: 导出CSV

    表  5  铝蜂窝板材料参数

    Table  5.   Material parameters of aluminum honeycomb panel

    Material Hf/(mm) Hb/(mm) Hc/(mm) h/(mm) a/(mm) ρ
    Al5083 2 2 16.5 0.05 6 0.022
    下载: 导出CSV

    表  6  不同胞元铝蜂窝板参数

    Table  6.   Parameters of aluminum honeycomb panel with different cell shapes

    Test No. Cell shapes Hc/(mm) h/(mm) a/(mm) ρ
    1 Hexagon 16.5 0.20 6 0.089
    2 Diamond 16.5 0.27 6 0.090
    3 Rectangle 16.5 0.27 6 0.090
    4 Triangle 16.5 0.15 6 0.087
    下载: 导出CSV
  • [1] PAIK J K, THAYAMBALLI A K, KIM G S.The strength characteristics of aluminum honeycomb sandwich panels[J].Thin Wall Struct, 1999, 35(3):205-231. doi: 10.1016/S0263-8231(99)00026-9
    [2] JEN Y M, CHANG L Y.Evaluating bending fatigue strength of aluminum honeycomb sandwich beams using local parameters[J].Int J Fatigue, 2008, 30(6):1103-1114. doi: 10.1016/j.ijfatigue.2007.08.006
    [3] HOU B, ZHAO H, PATTOFATTO S, et al.Inertia effects on the progressive crushing of aluminium honeycombs under impact loading[J].Int J Solids Struct, 2012, 49(19):2754-2762. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0ad6d8c1425c43df8bb9c0d242736265
    [4] ZHAO H, GARY G.Crushing behaviour of aluminium honeycombs under impact loading[J].Int J Impact Eng, 1998, 21(10):827-836. doi: 10.1016/S0734-743X(98)00034-7
    [5] JEN Y M, CHANG L Y.Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams[J].Eng Fail Anal, 2009, 16(4):1282-1293. doi: 10.1016/j.engfailanal.2008.08.004
    [6] LI X, WANG Z, ZHU F, et al.Response of aluminium corrugated sandwich panels under air blast loadings:experiment and numerical simulation[J].Int J Impact Eng, 2014, 65:79-88. doi: 10.1016/j.ijimpeng.2013.11.002
    [7] 张旭红, 王志华, 赵隆茂.爆炸载荷作用下铝蜂窝夹芯板的动力响应[J].爆炸与冲击, 2009, 29(4):356-360. doi: 10.3321/j.issn:1001-1455.2009.04.004

    ZHANG X H, WANG Z H, ZHAO L M.Dynamic responses of sandwich plates with aluminum honeycomb cores subjected to blast loading[J].Explosion and Shock Waves, 2009, 29(4):356-360. doi: 10.3321/j.issn:1001-1455.2009.04.004
    [8] 谭思博, 侯兵, 李玉龙, 等.基体材料对铝蜂窝动态强化特性的影响[J].爆炸与冲击, 2015, 35(1):16-21. http://d.old.wanfangdata.com.cn/Periodical/bzycj201501003

    TAN S B, HOU B, LI Y L, et al.Effect of base materials on the dynamic enhancement of aluminium honeycombs[J].Explosion and Shock Waves, 2015, 35(1):16-21. http://d.old.wanfangdata.com.cn/Periodical/bzycj201501003
    [9] HEIMBS S, MIDDENDORF P, MAIER M.Honeycomb sandwich material modeling for dynamic simulations of aircraft interior components[C]//Proceedings of the 9th International LS-DYNA Users Conference.Dearborn, Michigan, 2006.
    [10] 胡玉琴.铝蜂窝夹层板等效模型研究及数值分析[D].南京: 南京航空航天大学, 2008.

    HU Y Q.Equivalent models research and numerical analysis of aluminum honeycomb sandwich plates[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
    [11] 贾宪振, 胡毅亭, 董明荣, 等.深水环境中水下爆炸冲击波作用下圆柱壳动态响应的数值模拟研究[J].振动与冲击, 2008, 27(5):160-165. doi: 10.3969/j.issn.1000-3835.2008.05.041

    JIA X Z, HU Y T, DONG M R, et al.Dynamic response of cylindrical shell subjected to underwater explisive shock waves in deep water[J].Journal of Vibration and Shock, 2008, 27(5):160-165. doi: 10.3969/j.issn.1000-3835.2008.05.041
    [12] 夏博文, 魏亚杰, 饶国宁, 等.含铝炸药爆炸作用下的水中圆柱壳动态响应数值研究[J].爆破器材, 2014, 43(6):1-5. doi: 10.3969/j.issn.1001-8352.2014.06.001

    XIA B W, WEI Y J, RAO G N, et al.Dynamic response of underwater cylindrical shells subjected to blast loads of aluminized explosives[J].Explosive Materials, 2014, 43(6):1-5. doi: 10.3969/j.issn.1001-8352.2014.06.001
    [13] 于川, 李良忠.含铝炸药爆轰产物JWL状态方程研究[J].爆炸与冲击, 1999, 19(3):274-279. http://d.old.wanfangdata.com.cn/Periodical/bzycj199903014

    YU C, LI L Z.Studies on JWL equation of state of detonation product for aluminized explosive[J].Explosion and Shock Waves, 1999, 19(3):274-279. http://d.old.wanfangdata.com.cn/Periodical/bzycj199903014
    [14] 李冀祺, 马素贞.爆炸力学[M].北京:科学出版社, 1992.
    [15] 汪维.钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究[D].长沙: 国防科学技术大学, 2012.

    WANG W.Study on damage effects and assessments method of reinforced concrete structural members under blast loading[D].Changsha: National University of Defense Technology, 2012.
    [16] FLECK N A, DESHPANDE V S.The resistance of clamped sandwich beams to shock loading[J].J Appl Mech, 2004, 71(3):386-401. doi: 10.1115/1.1629109
    [17] 余同希, 邱信明.冲击动力学[M].北京:清华大学出版社, 2011.
    [18] 高玉华.铝合金LC4和LY24CZ在高应变率拉伸和压缩下的本构关系[J].材料科学与工艺, 1994, 2(2):24-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400849627

    GAO Y H.Dynamic and tensile properties of Al alloys LC4 and LY12CZ at high strain rate[J].Material Sicence and Technology, 1994, 2(2):24-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400849627
    [19] 孙瑞雪, 徐磊, 赵文博.不同应变速率下5083铝合金的拉伸性能及端口形貌[J].轻金属, 2012(8):59-61. doi: 10.3969/j.issn.1002-1752.2012.08.016

    SUN R X, XU L, ZHAO W B.The tensile properties and fracture morphologies of 5083 aluminum alloy under different strain rates[J].Light Metals, 2012(8):59-61. doi: 10.3969/j.issn.1002-1752.2012.08.016
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  7400
  • HTML全文浏览量:  2816
  • PDF下载量:  94
出版历程
  • 收稿日期:  2016-03-23
  • 修回日期:  2016-06-04

目录

    /

    返回文章
    返回