水下强声源的多电极阵列聚束特性

刘小龙 张群飞 雷开卓

刘小龙, 张群飞, 雷开卓. 水下强声源的多电极阵列聚束特性[J]. 高压物理学报, 2017, 31(2): 175-181. doi: 10.11858/gywlxb.2017.02.010
引用本文: 刘小龙, 张群飞, 雷开卓. 水下强声源的多电极阵列聚束特性[J]. 高压物理学报, 2017, 31(2): 175-181. doi: 10.11858/gywlxb.2017.02.010
LIU Xiao-Long, ZHANG Qun-Fei, LEI Kai-Zhuo. Multi-Electrode Array Bunching Characteristics of Underwater Intense Sound Source[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 175-181. doi: 10.11858/gywlxb.2017.02.010
Citation: LIU Xiao-Long, ZHANG Qun-Fei, LEI Kai-Zhuo. Multi-Electrode Array Bunching Characteristics of Underwater Intense Sound Source[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 175-181. doi: 10.11858/gywlxb.2017.02.010

水下强声源的多电极阵列聚束特性

doi: 10.11858/gywlxb.2017.02.010
基金项目: 

国家自然科学基金 61531015

西北工业大学科技创新基金 W018105

详细信息
    作者简介:

    刘小龙(1984—), 男, 讲师, 主要从事水下高压脉冲放电、声场分析研究. E-mail: wusiguangchang2005@126.com

  • 中图分类号: O427; TB561

Multi-Electrode Array Bunching Characteristics of Underwater Intense Sound Source

  • 摘要: 分析了水下等离子体强声源的冲击波产生特性,利用激波产生时刻与触发开关导通时刻之间时间间隔的一致性,提出了基于激波叠加的多电极阵列聚束的可行方案。建立了水下等离子体强声源的多电极阵列聚束模型,通过仿真计算,得到了不同放电时序下的多电极阵列聚束声场分布特性。仿真结果表明:基于激波的多电极阵列聚束方案可有效进行相干叠加,通过控制多电极阵列的阵元放电时序可灵活改变阵列聚束区域的指向性,有效提高指定区域的聚束波声压级。研究结果对认识水下强声冲击波的叠加规律和优化水下强声源的多电极阵列设计具有指导意义。

     

  • 图  典型的水下等离子体强声源的声脉冲信号与电压波形

    Figure  1.  Typical sound pulse and voltage waveforms of underwater plasma intense sound source

    图  水下强声源的多电极阵列聚束原理示意图

    (1.高压充电系统; 2.储能系统; 3.控制系统; 4.可编程逻辑器件; 5.多通道触发系统)

    Figure  2.  Multi-electrode array bunching principle diagram of underwater intense sound source

    (1.High-voltage charging system; 2.Energy storage system; 3.Control system; 4.Complex programmable logic device; 5.Multi-channel triggering system)

    图  多电极阵列聚束的声场分布云图

    Figure  3.  Sound field distribution chart of multi-electrode array bunching

    图  多电极阵列聚束偏转的声场分布云图

    Figure  4.  Sound field distribution chart of multi-electrode array bunching deflection area

    图  多电极阵列聚束的声场变化

    Figure  5.  Bunching sound field change of multi-electrode array

    表  1  重复试验条件下的冲击波分析

    Table  1.   Shock wave analysis based on repeated measure condition

    Discharge sequence Sound pressure level of shock wave/(dB) (tB-tA)/(μs) Sound pressure level of bubble wave/(dB) (tC-tA)/(μs)
    1 242.2 192 244.1 7 888
    2 241.3 192 242.7 7 528
    3 241.8 193 240.2 7 807
    4 241.6 192 241.6 7 633
    5 241.2 192 243.0 7 522
    下载: 导出CSV
  • [1] 李宁, 陈建峰, 黄建国, 等.各种水下声源的发声机理及其特性[J].应用声学, 2009, 29(4):1-8. http://d.old.wanfangdata.com.cn/Periodical/yysx200904001

    LI N, CHEN J F, HUANG J G, et al.Sounding mechanisms and characteristics of various underwater sound sources[J].Applied Acoustics, 2009, 29(4):1-8. http://d.old.wanfangdata.com.cn/Periodical/yysx200904001
    [2] 孙鹏, 刘平香.水下定位声能技术在水声对抗中的应用研究[J].舰船科学技术, 2007, 29(3):65-67. http://www.cqvip.com/Main/Detail.aspx?id=24754018

    SUN P, LIU P X.On study of underwater directional acoustic energy technology and its application in underwater acoustic warfare[J].Ship Science Technology, 2007, 29(3):65-67. http://www.cqvip.com/Main/Detail.aspx?id=24754018
    [3] WANG Y B, WANG S W, ZENG X W.A Theoretical estimation of the pre-break down-heating time in the underwater discharge acoustic source[J].Chin Phys B, 2012, 21(5):055203. doi: 10.1088/1674-1056/21/5/055203
    [4] 肖锋.现场可控非致命的次声武器研究[J].兵工学报, 2002, 23(3):426-429. doi: 10.3321/j.issn:1000-1093.2002.03.037

    XIAO F.Nonlethal infrasonic weapon for on-site control[J].Acta Armamentarii, 2002, 23(3):426-429. doi: 10.3321/j.issn:1000-1093.2002.03.037
    [5] 马再如, 冯国英, 陈建国, 等.多个超短脉冲相干叠加构成窄带平顶长脉冲的研究[J].物理学报, 2007, 56(2):933-940. doi: 10.3321/j.issn:1000-3290.2007.02.052

    MA Z R, FENG G Y, CHEN J G, et al.Research on the formation of narrow bandwidth long flat-top pulse via coherent addition of ultra-short pulses[J].Acta Physica Sinica, 2007, 56(2):933-940. doi: 10.3321/j.issn:1000-3290.2007.02.052
    [6] 黄晶, 张志钢, 阙沛文, 等.线形宽带超声相控阵换能器的声场分析[J].压电与声光, 2004, 26(6):506-509. doi: 10.3969/j.issn.1004-2474.2004.06.024

    HUANG J, ZHANG Z G, QUE P W, et al.Analysis for acoustic field of wide-band linear phased array[J].Piezoelectrics & Acoustooptics, 2004, 26(6):506-509. doi: 10.3969/j.issn.1004-2474.2004.06.024
    [7] LIU X L, HUANG J G, HUANG H.Numerical simulation of underwater plasma intense acoustic focusing sound field[C]//2011 International Conference on Computer Science and Network Technology.Harbin, 2011: 1255-1258.
    [8] 王晓东, 王君琳, 李平.相控阵高强度聚焦超声的研究进展[J].物理, 2007, 36(10):758-763. doi: 10.3321/j.issn:0379-4148.2007.10.005

    WANG X D, WANG J L, LI P.Development of phased array high intensity focused ultrasound[J].Physics, 2007, 36(10):758-763. doi: 10.3321/j.issn:0379-4148.2007.10.005
    [9] 沈建国.相控声源与声束的形成[J].地球物理学进展, 2004, 19(1):191-200. doi: 10.3969/j.issn.1004-2903.2004.01.030

    SHEN J G.Acoustic phased source and the formation of acoustic beam[J].Progress in Geophysics, 2004, 19(1):191-200. doi: 10.3969/j.issn.1004-2903.2004.01.030
    [10] 周泽民, 曾新吾.水声聚焦相控阵列及其声场特性研究[J].振动与冲击, 2012, 31(19):86-89. http://d.old.wanfangdata.com.cn/Periodical/zdycj201219019

    ZHOU Z M, ZENG X W.An underwater focused acoustic phased array and the sound fields characteristics[J].Journal of Vibration and Shock, 2012, 31(19):86-89. http://d.old.wanfangdata.com.cn/Periodical/zdycj201219019
    [11] YAN Z, HE X D, ZHANG X W, et al.A novel underwater spark sound source using the needle-to-plane multi-electrode[C]//2011 International Conference on Electronics, Communications and Control.Ningbo, 2011: 2464-2466.
    [12] 裴彦良, 刘保华, 王揆洋, 等.智能控制复合相干电火花震源技术研究[J].高技术通讯, 2006, 16(7):697-700. doi: 10.3321/j.issn:1002-0470.2006.07.008

    PEI Y L, LIU B H, WANG K Y, et al.Study on the technique of intelligent controlled multiplex and interferential sparker source[J].High Technology Letters, 2006, 16(7):697-700. doi: 10.3321/j.issn:1002-0470.2006.07.008
    [13] 张洪欣, 孙坤平, 赵安邦, 等.组合式水下等离子体声源控制平台设计[J].海洋技术学报, 2014, 33(1):33-38. http://d.old.wanfangdata.com.cn/Periodical/hyjs201401007

    ZHANG H X, SUN K P, ZHAO A B, et al.Design of a control platform for combined underwater plasma sound source[J].Journal of Ocean Technology, 2014, 33(1):33-38. http://d.old.wanfangdata.com.cn/Periodical/hyjs201401007
    [14] 刘小龙, 黄建国, 雷开卓.水下等离子体声源的冲击波负压特性[J].物理学报, 2013, 62(20):204301. doi: 10.7498/aps.62.204301

    LIU X L, HUANG J G, LEI K Z.Shock wave negative pressure characteristics of underwater plasma sound source[J].Acta Physica Sinica, 2013, 62(20):204301. doi: 10.7498/aps.62.204301
    [15] LI N, HUANG J G, LEI K Z, et al.The characteristic of the bubble generated by underwater high-voltage discharge[J].J Electrostat, 2011, 69(4):291-295. doi: 10.1016/j.elstat.2011.04.004
    [16] 张军, 曾新吾, 陈聃, 等.水下强声波脉冲负压的产生和空化气泡运动[J].物理学报, 2012, 61(18):184302. doi: 10.7498/aps.61.184302

    ZHANG J, ZENG X W, CHEN D, et al.Generation of negative pressure of underwater intensive acoustic pulse and cavitation bubble dynamics[J].Acta Physica Sinica, 2012, 61(18):184302. doi: 10.7498/aps.61.184302
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  6847
  • HTML全文浏览量:  2710
  • PDF下载量:  219
出版历程
  • 收稿日期:  2015-12-12
  • 修回日期:  2016-02-27

目录

    /

    返回文章
    返回