封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响

李祥春 聂百胜 杨春丽 陈金伟

李祥春, 聂百胜, 杨春丽, 陈金伟. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响[J]. 高压物理学报, 2017, 31(2): 135-147. doi: 10.11858/gywlxb.2017.02.005
引用本文: 李祥春, 聂百胜, 杨春丽, 陈金伟. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响[J]. 高压物理学报, 2017, 31(2): 135-147. doi: 10.11858/gywlxb.2017.02.005
LI Xiang-Chun, NIE Bai-Sheng, YANG Chun-Li, CHEN Jin-Wei. Effect of Gas Concentration on Kinetic Characteristics of Gas Explosion in Confined Space[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135-147. doi: 10.11858/gywlxb.2017.02.005
Citation: LI Xiang-Chun, NIE Bai-Sheng, YANG Chun-Li, CHEN Jin-Wei. Effect of Gas Concentration on Kinetic Characteristics of Gas Explosion in Confined Space[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135-147. doi: 10.11858/gywlxb.2017.02.005

封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响

doi: 10.11858/gywlxb.2017.02.005
基金项目: 

国家自然科学基金 51304212

教育部高等学校博士学科点专项科研基金 20120023120005

北京高等学校青年英才计划项目 YETP0930

中央高校基本科研业务费专项资金 2009QZ09

详细信息
    作者简介:

    李祥春(1979—), 男,博士,副教授,主要从事安全科学及工程研究.E-mail:chinalixc123@163.com

    通讯作者:

    聂百胜(1973—), 男,博士,教授,主要从事安全科学及工程研究.E-mail:bshnie@163.com

  • 中图分类号: O381; X932

Effect of Gas Concentration on Kinetic Characteristics of Gas Explosion in Confined Space

  • 摘要: 为了研究瓦斯浓度对瓦斯爆炸反应动力学特性的影响,利用定容反应器模型,对不同瓦斯浓度情况下的瓦斯爆炸反应进行了模拟研究。研究结果表明:随着初始瓦斯浓度的增加,瓦斯爆炸的最终温度先升后降,压力逐渐升高;·OH、H·和O·自由基摩尔分数先升后降;残余的CH4摩尔分数缓慢增加,O2摩尔分数缓慢减少至零。瓦斯爆炸的最佳反应浓度比化学计量浓度要高,大约在10%~12%之间,此时爆炸后体系中温度达到最大值。在化学当量比情况下,对甲烷和氧气的消耗、自由基(O·和H·)的生成起促进作用的关键基元反应步为R32、R38、R85、R118、R119、R155、R156、R157;对甲烷和氧气的产生、自由基(O·和H·)的消减起促进作用的关键基元反应步为R53、R158。

     

  • 图  CH4和O2摩尔分数随时间的变化(初始CH4浓度为6.0%、9.5%和14.0%)

    Figure  1.  Mole fractions of CH4 and O2 vary with time at initial CH4 concentration of 6.0%, 9.5% and 14.0%

    图  CH4浓度对最终反应物摩尔分数变化的影响

    Figure  2.  Effect of CH4 concentration on the variation of final reactants' mole fraction

    图  压力和温度随时间的变化(初始CH4浓度为6.0%、9.5%和14.0%)

    Figure  3.  Temperature and pressure vary with time at initial CH4 concentration of 6.0%, 9.5% and 14.0%

    图  CH4浓度对最终温度及压力的影响

    Figure  4.  Effect of CH4 concentration on the variation of final temperature and pressure

    图  自由基摩尔分数变化情况(初始CH4浓度为6.0%、9.5%和14.0%)

    Figure  5.  Free radical mole fractions vary with time at initial CH4 concentration of 6.0%, 9.5% and 14.0%

    图  甲烷到亚甲基、甲醇和甲氧基的主要历程

    Figure  6.  Main processes of CH4 to

    图  CH4浓度对最终自由基摩尔分数的影响

    Figure  7.  Effect of CH4 concentration on final free radicals' mole fraction

    图  CH4初始浓度为9.5%时影响CH4和O2的基元反应步

    Figure  8.  TKER influencing CH4 and O2 at initial CH4 concentration of 9.5%

    图  CH4初始浓度为14.0%时影响CH4和O2的基元反应步

    Figure  9.  TKER influencing CH4 and O2 at initial CH4 concentration of 14.0%

    图  10  CH4初始浓度为6.0%时影响CH4和O2的基元反应步

    Figure  10.  TKER influencing CH4 and O2 at initial CH4 concentration of 6.0%

    图  11  CH4初始浓度为9.5%时影响自由基的基元反应步

    Figure  11.  TKER influencing free radical at initial CH4 concentration of 9.5%

    图  12  CH4初始浓度为14.0%时影响自由基的基元反应步

    Figure  12.  TKER influencing free radical at initial CH4 concentration of 14.0%

    图  13  CH4初始浓度为6.0%时影响自由基的基元反应步

    Figure  13.  TKER influencing free radical at initial CH4 concentration of 6.0%

    表  1  初始模拟计算条件

    Table  1.   Initial conditions of simulation

    Working condition Initial temperature/(K) Initial pressure/(MPa) Mole fraction/(%) Calculating time/(ms)
    CH4 O2 N2
    1 1 200 0.09 6.00 19.74 74.26 100
    2 1 200 0.09 9.50 19.00 71.50 100
    3 1 200 0.09 14.00 18.06 67.94 100
    下载: 导出CSV
  • [1] 俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社, 1992.

    YU Q X.Coal mine gas control[M].Xuzhou:China University of Mining and Technology Press, 1992.
    [2] HIBBARD R R, PINKEL B.Flame propagation.Ⅳ.correlation of maximum fundamental flame velocity with hydrocarbon structure[J].J Am Chem Soc, 1951, 73(4):1622-1625. doi: 10.1021/ja01148a062
    [3] YETTER R A, DRYER F L, RABITZ H.A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics[J].Combust Sci Technol, 1991, 79(1/2/3):97-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=896c0feaa4bf471e997032f0c4e48d51
    [4] FRENKLACH M.Reaction mechanism of soot formation in flames[J].Phys Chem Chem Phys, 2002, 4(11):2028-2037. doi: 10.1039/b110045a
    [5] DAGAUT P.On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel[J].Phys Chem Chem Phys, 2002, 4(11):2079-2094. doi: 10.1039/b110787a
    [6] 邓军, 李会荣, 杨迎, 等.瓦斯爆炸微观动力学及热力学分析[J].煤炭学报, 2006, 31(4):488-491. doi: 10.3321/j.issn:0253-9993.2006.04.018

    DENG J, LI H R, YANG Y, et al.Microcosmic dynamics and thermodynamics analysis of fire damp explosion[J].Journal of China Coal Society, 2006, 31(4):488-491. doi: 10.3321/j.issn:0253-9993.2006.04.018
    [7] 王从银, 何学秋.瓦斯爆炸传播火焰高内聚力特性的试验研究[J].中国矿业大学学报, 2001, 30(3):217-220. doi: 10.3321/j.issn:1000-1964.2001.03.001

    WANG C Y, HE X Q.Experimental study on cohesive force property of flame from gas explosion[J].Journal of China University of Mining&Techonology, 2001, 30(3):217-220. doi: 10.3321/j.issn:1000-1964.2001.03.001
    [8] 林柏泉, 菅从光, 周世宁.湍流的诱导及对瓦斯爆炸火焰传播的作用[J].中国矿业大学学报, 2003, 32(2):107-110. doi: 10.3321/j.issn:1000-1964.2003.02.001

    LIN B Q, JIAN C G, ZHOU S N.Inducement of turbulence and its effect on fire transmission in gas explosion[J].Journal of China University of Mining&Techonology, 2003, 32(2):107-110. doi: 10.3321/j.issn:1000-1964.2003.02.001
    [9] 乔瑜, 徐明厚, 姚洪.基于敏感性分析的甲烷反应机理优化简化[J].华中科技大学学报(自然科学版), 2007, 35(5):85-87. doi: 10.3321/j.issn:1671-4512.2007.05.025

    QIAO Y, XU M H, YAO H.Optimally-reduced kinetic models for GRI-Mech 3.0 combustion mechanism based on sensitivity analysis[J].Journal of Huazhong University of Science and Technology (Nature Science Edition), 2007, 35(5):85-87. doi: 10.3321/j.issn:1671-4512.2007.05.025
    [10] 毕明树.细水雾抑制瓦斯爆炸的实验研究[J].采矿与安全工程学报, 2012, 29(3):440-443. http://d.old.wanfangdata.com.cn/Periodical/bzycj201702004

    BI M S.Experimental investigation on suppression of gas explosion with water mist[J].Journal of Mining&Safety Engineering, 2012, 29(3):440-443. http://d.old.wanfangdata.com.cn/Periodical/bzycj201702004
    [11] 余明高, 梁栋林, 徐永亮, 等.荷电细水雾抑制瓦斯爆炸实验研究[J].煤炭学报, 2014, 39(11):2232-2238. http://d.old.wanfangdata.com.cn/Periodical/mtxb201411013

    YU M G, LIANG D L, XU Y L, et al.Experimental study on inhibiting the gas explosion by charged water mist[J].Journal of China Coal Society, 2014, 39(11):2232-2238. http://d.old.wanfangdata.com.cn/Periodical/mtxb201411013
    [12] 刘丹, 司荣军, 李润之.环境湿度对瓦斯爆炸特性的影响[J].高压物理学报, 2015, 29(4):307-312. http://www.gywlxb.cn/CN/abstract/abstract1820.shtml

    LIU D, SI R J, LI R Z.Ambient humidity influence on explosion characteristics of methane air mixture[J].Chinese Journal of High Pressure Physics, 2015, 29(4):307-312. http://www.gywlxb.cn/CN/abstract/abstract1820.shtml
    [13] SPALDING D B.Mixing and chemical reaction in steady confined turbulent flame[C]//Proceedings of 13th Symposium (International) on Combustion.Pittsburgh: Combustion Institute, 1971: 649-657.
    [14] FAIRWEATHER M, IBRAHIM S S, JAGGERS H, et al.Turbulent premixed flame propagation in a cylindrical vessel[J].Symposium (International) on Combustion, 1996, 26(1):365-371. doi: 10.1016/S0082-0784(96)80237-2
    [15] 姚海霞, 范宝春, 李鸿志.障碍物诱导的湍流加速火焰流场的数值模拟[J].南京理工大学学报, 1999, 23(2):109-112. doi: 10.3969/j.issn.1005-9830.1999.02.004

    YAO H X, FAN B C, LI H Z.The simulation of turbulent acceleration flame induced by obstacle[J].Journal of Nanjing University of Science and Technology, 1999, 23(2):109-112. doi: 10.3969/j.issn.1005-9830.1999.02.004
    [16] 范宝春, 姜孝海, 谢波.障碍物导致甲烷-氧气爆炸的三维数值模拟[J].煤炭学报, 2002, 27(4):371-373. doi: 10.3321/j.issn:0253-9993.2002.04.008

    FAN B C, JIANG X H, XIE B.Three dimensional numerical simulation of explosion induced by obstacles in CH4-O2 mixture[J].Journal of China Coal Society, 2002, 27(4):371-373. doi: 10.3321/j.issn:0253-9993.2002.04.008
    [17] 徐景德, 杨庚宇.置障条件下的矿井瓦斯爆炸传播过程数值模拟研究[J].煤炭学报, 2004, 29(1):53-56. doi: 10.3321/j.issn:0253-9993.2004.01.012

    XU J D, YANG G Y.Numerical simulation of the barricade encouraging effect in the process of gas explosion propagation[J].Journal of China Coal Society, 2004, 29(1):53-56. doi: 10.3321/j.issn:0253-9993.2004.01.012
    [18] 余立新, 孙文超, 吴承康.障碍物管道中湍流火焰发展的数值模拟[J].燃烧科学与技术, 2003, 9(1):11-15. doi: 10.3321/j.issn:1006-8740.2003.01.003

    YU L X, SUN W C, WU C K.Numerical simulation of development of turbulent flame in an obstructed tube[J].Journal of Combustion Science and Technology, 2003, 9(1):11-15. doi: 10.3321/j.issn:1006-8740.2003.01.003
    [19] 陈先锋, 张银, 许小江, 等.不同当量比条件下矿井瓦斯爆炸过程的数值模拟[J].采矿与安全工程学报, 2012, 29(3):429-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201670745

    CHEN X F, ZHANG Y, XU X J, et al.Numerical simulation on mine gas explosion in different gas content[J].Journal of Mining&Safety Engineering, 2012, 29(3):429-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201670745
    [20] FERRARA G.CFD analysis of gas explosions vented through relief pipes[J].J Hazard Mater, 2006, 137(2):654-665. doi: 10.1016/j.jhazmat.2006.03.037
    [21] HASHIMOTO A, MATSUO A.Numerical analysis of gas explosion inside two rooms connected by ducts[J].J Loss Prev Process Indust, 2007, 20(4):455-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aeb109eae8a55303b53613fbdf17ae79
    [22] MAREMONT M, RUSSO G, SALZANO E, et al.Numerical simulation of gas explosions in linked vessels[J].J Loss Prev Process Indust, 1999, 12(3):189-194. doi: 10.1016/S0950-4230(98)00061-8
    [23] LI X D, BAI C H, LIU Q M.Effects of obstacles on flame propagation behavior and explosion overpressure development during gas explosions in a large closed tube[J].Journal of Beijing Institute of Technology, 2007, 16(4):399-403. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb-e200704005
    [24] 冯长根, 陈林顺, 钱新明.点火位置对独头巷道中瓦斯爆炸超压的影响[J].安全与环境学报, 2001, 1(5):56-59. doi: 10.3969/j.issn.1009-6094.2001.05.014

    FENG C G, CHEN L S, QIAN X M.Influence of ignition location on explosion overpressure in coal mine blind tunnel[J].Journal of Safety and Environment, 2001, 1(5):56-59. doi: 10.3969/j.issn.1009-6094.2001.05.014
    [25] 曲志明, 刘历波, 王晓丽.掘进巷道瓦斯爆炸数值及实验分析[J].湖南科技大学学报(自然科学版), 2008, 23(2):9-14. http://d.old.wanfangdata.com.cn/Periodical/xtkyxyxb200802003

    QU Z M, LIU L B, WANG X L.Numerical and experimental analysis of gas explosion in the excavation roadway of coal mine[J].Journal of Hunan University of Science&Technology (Natural Science Edition), 2008, 23(2):9-14. http://d.old.wanfangdata.com.cn/Periodical/xtkyxyxb200802003
    [26] 宫广东, 刘庆明, 白春华.管道中瓦斯爆炸特性的数值模拟[J].兵工学报, 2010, 31(增刊1):17-21. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200911002

    GONG G D, LIU Q M, BAI C H.Numerical simulation for gas explosion in tubes[J].Acta Armamentarii, 2010, 31(Suppl 1):17-21. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200911002
    [27] 江丙友, 林柏泉, 朱传杰, 等.瓦斯爆炸冲击波在采煤工作面巷网中传播特性的数值模拟[J].煤炭学报, 2011, 36(6):968-972. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106016.htm

    JIANG B Y, LIN B Q, ZHU C J, et al.Numerical simulation on propagation characteristics of gas explosive shock waves in coalface tunnel network[J].Journal of China Coal Society, 2011, 36(6):968-972. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106016.htm
    [28] 林柏泉, 洪溢都, 朱传杰, 等.瓦斯爆炸压力与波前瞬态流速演化特征及其定量关系[J].爆炸与冲击, 2015, 35(1):108-115. http://d.old.wanfangdata.com.cn/Periodical/bzycj201501017

    LIN B Q, HONG Y D, ZHU C J, et al.Quantitative relationship between flow speed and overpressure of gas explosion in the open-end square tube[J].Explosion and Shock Waves, 2015, 35(1):108-115. http://d.old.wanfangdata.com.cn/Periodical/bzycj201501017
    [29] 赵军凯.瓦斯浓度对瓦斯爆炸影响的数值模拟研究[J].矿业安全与环保, 2012, 39(4):1-5. doi: 10.3969/j.issn.1008-4495.2012.04.001

    ZHAO J K.Numerical simulation study on effect of gas concentration upon gas explosion[J].Mining Safety&Environmental Protection, 2012, 39(4):1-5. doi: 10.3969/j.issn.1008-4495.2012.04.001
    [30] 胡铁柱.瓦斯爆炸传播规律数值模拟研究[D].北京: 中国矿业大学(北京), 2008: 5.

    HU T Z.Simulation study on the propagation of gas explosion[D].Beijing: China University of Mining&Technology (Beijing), 2008: 5.
    [31] 司荣军.高压环境条件下煤矿瓦斯爆炸特性数值模拟[J].煤矿安全, 2014, 45(7):1-4. http://d.old.wanfangdata.com.cn/Periodical/mkaq201407001

    SI R J.Numerical simulation of gas explosion characteristics under high pressure environment[J].Safety in Coal Mines, 2014, 45(7):1-4. http://d.old.wanfangdata.com.cn/Periodical/mkaq201407001
    [32] 郗雪辰, 张树海, 苟瑞君, 等.障碍物位置对瓦斯爆炸火焰传播影响的数值模拟[J].中北大学学报, 2015, 36(1):61-66. doi: 10.3969/j.issn.1673-3193.2015.01.012

    XI X C, ZHANG S H, GOU R J, et al.Numerical simulation of the influence of obstacles position on flame propagation of gas explosion[J].Journal of North University of China (Natural Science Edition), 2015, 36(1):61-66. doi: 10.3969/j.issn.1673-3193.2015.01.012
    [33] 汪泉.管道中甲烷-空气预混气爆炸火焰传播的研究[D].合肥: 安徽理工大学, 2006: 6.

    WANG Q.Investigation on propagation of premixed methane-air explosion flame in tube[D].Hefei: AnHui University of Science and Technology, 2006: 6.
    [34] 唐建军.细水雾抑制瓦斯爆炸实验与数值模拟研究[D].西安: 西安科技大学, 2009: 5.

    TANG J J.Experimental and numerical simulation research on suppressing gas explosion by water mist[D].Xi'an: Xi'an University of Science and Technology, 2009: 5.
    [35] 贾宝山, 王小云, 张师一, 等.受限空间中CO与水蒸汽阻尼瓦斯爆炸的反应动力学模拟研究[J].火灾科学, 2013, 22(3):131-139. doi: 10.3969/j.issn.1004-5309.2013.03.04

    JIA B S, WANG X Y, ZHANG S Y, et al.Kinetic simulation of CO and water vapor damping the gas explosion in an enclosed space[J].Fire Safety Science, 2013, 22(3):131-139. doi: 10.3969/j.issn.1004-5309.2013.03.04
    [36] 梁运涛, 曾文.封闭空间瓦斯爆炸与抑制机理的反应动力学模拟[J].化工学报, 2009, 60(7):1700-1706. doi: 10.3321/j.issn:0438-1157.2009.07.015

    LIANG Y T, ZENG W.Kinetic simulation of gas explosion and inhibition mechanism in enclosed space[J].Journal of the Chemical Industry and Engineering Society of China, 2009, 60(7):1700-1706. doi: 10.3321/j.issn:0438-1157.2009.07.015
    [37] 梁运涛, 曾文.激波诱导瓦斯爆炸的动力学特性及影响因素[J].爆炸与冲击, 2010, 30(4):370-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201004006

    LIANG Y T, ZENG W.Kinetic characteristics and influencing factors of gas explosion induced by shock wave[J].Explosion and Shock Waves, 2010, 30(4):370-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201004006
    [38] 梁运涛, 曾文.空气含湿量抑制瓦斯爆炸过程的数值模拟[J].深圳大学学报(理工版), 2013, 30(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/szdxxb201301008

    LIANG Y T, ZENG W.Simulation of the inhibition mechanism of humidity ratio of air in gas explosion process[J].Journal of Shenzhen University Science and Engineering, 2013, 30(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/szdxxb201301008
    [39] 王连聪, 陈洋.封闭空间水及CO2对瓦斯爆炸反应动力学特性的影响分析[J].煤矿安全, 2011, 42(7):16-20. http://d.old.wanfangdata.com.cn/Periodical/mkaq201107005

    WANG L C, CHEN Y.Analysis of the impact of water and CO2 on reaction kinetic for gas explosion in enclosure space[J].Safety in Coal Mines, 2011, 42(7):16-20. http://d.old.wanfangdata.com.cn/Periodical/mkaq201107005
    [40] 刘玉胜, 王平春, 刘风芹, 等.封闭空间低浓度CO对CH4爆炸影响的数值模拟[J].煤矿安全, 2013, 44(5):14-18. http://d.old.wanfangdata.com.cn/Periodical/mkaq201305005

    LIU Y S, WANG P C, LIU F Q, et.al.Numerical simulation of the effect of low CO concentration on CH4 explosion in closed space[J].Safety in Coal Mines, 2013, 44(5):14-18. http://d.old.wanfangdata.com.cn/Periodical/mkaq201305005
    [41] 高娜, 张延松, 胡毅亭, 等.受限空间瓦斯爆炸链式反应动力学分析[J].中国安全科学学报, 2014, 24(1):60-65. doi: 10.3969/j.issn.1003-3033.2014.01.010

    GAO N, ZHANG Y S, HU Y T, et al.Dynamics analysis of gas explosion chain reaction in restricted space[J].China Safety Science Journal, 2014, 24(1):60-65. doi: 10.3969/j.issn.1003-3033.2014.01.010
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  7038
  • HTML全文浏览量:  2624
  • PDF下载量:  43
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2016-06-06

目录

    /

    返回文章
    返回