辉石结构与相变的第一性原理研究

韩林 马麦宁 徐志双 周晓亚

韩林, 马麦宁, 徐志双, 周晓亚. 辉石结构与相变的第一性原理研究[J]. 高压物理学报, 2017, 31(2): 125-134. doi: 10.11858/gywlxb.2017.02.004
引用本文: 韩林, 马麦宁, 徐志双, 周晓亚. 辉石结构与相变的第一性原理研究[J]. 高压物理学报, 2017, 31(2): 125-134. doi: 10.11858/gywlxb.2017.02.004
HAN Lin, MA Mai-Ning, XU Zhi-Shuang, ZHOU Xiao-Ya. Structural Properties and Phase Transition of Pyroxene Polymorphs from First-Principles[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 125-134. doi: 10.11858/gywlxb.2017.02.004
Citation: HAN Lin, MA Mai-Ning, XU Zhi-Shuang, ZHOU Xiao-Ya. Structural Properties and Phase Transition of Pyroxene Polymorphs from First-Principles[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 125-134. doi: 10.11858/gywlxb.2017.02.004

辉石结构与相变的第一性原理研究

doi: 10.11858/gywlxb.2017.02.004
基金项目: 

国家自然科学基金 41274091

国家自然科学基金 41674089

详细信息
    作者简介:

    韩林(1990—),女,硕士研究生,主要从事矿物物理计算研究.E-mail:hanlin13@mails.ucas.ac.cn

    通讯作者:

    马麦宁(1972—),男,博士,副教授,主要从事岩石、矿物物理研究.E-mail:mamn@ucas.ac.cn

  • 中图分类号: P574.1;O521.2

Structural Properties and Phase Transition of Pyroxene Polymorphs from First-Principles

  • 摘要: 利用第一性原理方法研究了Mg端员辉石(MgSiO3)低压相(PbcaP21/c)和高压相(C2/cP21ca)在不同压力下(0~30 GPa)的结构。首先计算得到了不同压力下各相的晶胞体积,并由状态方程拟合得到了体积模量,结果显示在零温零压条件下PbcaP21/c(低压单斜相)的体积模量相近,C2/c的体积模量最大(比Pbca的大3%),而P21ca作为高压相其体积模量却比Pbca小很多。其次分析了Mg端员辉石3个轴向的压缩性,发现C2/c相的c轴比a轴难压缩,与前人研究的透辉石(MgCaSi2O6)的表现相反。P21/cC2/cP21ca的链角随着压力的增大而减小;Pbca其中一种链角的变化趋势和其他3个相一样,而另一种链角先随着压力的增大而减小,在达到7 GPa后开始增大,可能表示相的不稳定或开始相变。最后通过研究不同相之间的焓值差,讨论了Mg端员辉石在低温高压下可能存在的相变情况。

     

  • 图  Mg端员辉石PbcaP21/cC2/cP21ca在不同压力下晶胞体积的第一性原理计算结果

    (P21/c和C2/c为两倍晶胞体积)

    Figure  1.  First-principles results on unit cell volumes of Mg end-member pyroxenes Pbca, P21/c (2×unit cell), P21ca, and C2/c (2×unit cell) under different pressures

    图  不同压力下,PbcaP21/c以及C2/c的晶胞体积计算结果和实验结果的比较(左图和右图分别为加压力校正前和加压力校正后;为了方便与实验数据对比,对于PbcaP21/c,计算的压力范围为-3~15 GPa)

    Figure  2.  Comparisons of unit cell volumes of Pbca, P21/c and C2/c under different pressures from first-principles and experiments (The pressure ranged from -3 GPa to 15 GPa and a pressure correction of 2.7 GPa was applied to all first-principles results in right figures)

    图  辉石abc轴的轴向压缩率

    Figure  3.  Axial compression ratios of a, b and c axis of pyroxene polymorphs

    图  辉石(P21/c)的四面体链链角

    Figure  4.  Tetrahedral chain angels of pyroxene (P21/c)

    图  辉石的超胞结构(PbcaP21ca:1×2×2个晶胞;P21/cC2/c:2×2×2个晶胞)

    Figure  5.  Super cells of pyroxenes (Pbcas, P21ca:1×2×2;P21/c, C2/c:2×2×2)

    图  不同压力下辉石的硅氧四面体链角

    Figure  6.  SiO4 tetrahedral chain angels under pressures up to 30 GPa

    图  不同压力下P21caP21/cC2/cPbca之间的焓值差ΔH

    Figure  7.  Static enthalpy differences (ΔH) of pyroxene polymorphs under different pressures

    表  1  Mg端员辉石晶胞体积、体积模量的计算结果(0 K)和实验结果(室温)

    Table  1.   Unit cell volumes and elastic moduli of Mg end-member pyroxene polymorphs from first-principles results (at 0 K) and experiments (at room temperature)

    Space group V/(nm3) K/(GPa) K′ Reference
    Pbca 0.813 8 130.8(0.6) 5.2 This study (LDA)
    0.812 239(90) 129 Kung et al., 2004 (2.7 GPa)[15]
    0.812 5(1) Periotto et al., 2012 (2.69 GPa)[33]
    0.832 918(114) 108(1) 7.2(7) Kung et al., 2004 (Ambient condition)[15]
    P21/c 0.407 4 131.0(0.4) 5.2 This study (LDA)
    0.409 Yu et al., 2010 (LDA)[29]
    0.397 Jahn, 2008 (LDA)[17]
    0.407 Jacobsen et al., 2010 (2.58 GPa)[34]
    0.415 78 113(2) 6.6(9) Jacobsen et al., 2010 (Ambient condition)[34]
    0.416 7 Kung et al., 2004 (Ambient condition)[15]
    C2/c 0.395 4 134.7(0.5) 5.5 This study (LDA)
    0.382 3 This study (LDA; 4.98 GPa)
    0.375 6 This study (LDA; 8.0 GPa)
    0.379 1 Yu et al., 2010 (LDA; 7.9 GPa)[29]
    0.382 317(57) 163 Kung et al., 2004 (Room temperature, 7.6 GPa)[15]
    P21ca 0.805 8 121.7(2.5) 5.7 This study (LDA)
    0.753 6 This study (LDA; 10 GPa)
    0.733 9 Jahn, 2008 (LDA; 10 GPa)[17]
    下载: 导出CSV

    表  2  辉石的轴向体积模量以及轴向压缩性比值

    Table  2.   Axial moduli and compressibility ratios of pyroxenes

    Space group Ka 0/(GPa) Kb 0/(GPa) Kc 0/(GPa) βa:βb:βc
    Pbca 160.7 106.1 135.1 0.66:1.00:0.79
    P21/c 132.6 106.7 138.9 0.80:1.00:0.77
    C2/c 124.2 111.9 150.5 0.90:1.00:0.74
    P21ca 152.3 110.4 102.1 0.72:1.00:1.08
    下载: 导出CSV
  • [1] ANDERSON D L.New theory of the earth[M].New York:Cambridge University Press, 2007:30-32.
    [2] 佐尔泰T, 斯托特J H.矿物学原理[M].施倪承, 马喆生, 译.北京: 地质出版社, 1992: 353-355.

    ZOLTAI T, STOUT J H.Mineralogy: concepts and principles[M].Translated by SHI N C, MA Z S.Beijing: Geological Publishing House, 1992: 353-355.
    [3] DUFFY T S, VAUGHAN M T.Elasticity of enstatite and its relationship to crystal structure[J].J Geophys Res, 1988, 93(B1):383-391. doi: 10.1029/JB093iB01p00383
    [4] MORIMOTO N, KOTO K.The crystal structure of orthoenstatite[J].Z Kristallogr, 1969, 129(1-6):65-83. http://cn.bing.com/academic/profile?id=432200f92f81f62696700f8f6cc3f1ae&encoded=0&v=paper_preview&mkt=zh-cn
    [5] MORIMOTO N, APPLEMAN D E, EVANS H T Jr.The crystal structures of clinoenstatite and pigeonite[J].Z Kristallogr, 1960, 114(1-6):120-147. doi: 10.1524/zkri.1960.114.1-6.120
    [6] ANGEL R J, CHOPELAS A, ROSS N L.Stability of high-density clinoenstatite at upper-mantle pressures[J].Nature, 1992, 358(6384):322-324. doi: 10.1038/358322a0
    [7] ZHANG J S, DERA P, BASS J D.A new high-pressure phase transition in natural Fe-bearing orthoenstatite[J].Am Mineral, 2012, 97(7):1070-1074. doi: 10.2138/am.2012.4072
    [8] ZHANG J S, REYNARD B, MONTAGNAC G, et al.Pressure-induced Pbca-P21/c phase transition of natural orthoenstatite:compositional effect and its geophysical implications[J].Am Mineral, 2013, 98(5/6):986-992. https://www.sciencedirect.com/science/article/pii/S0031920113001428
    [9] ZHANG J S, REYNARD B, MONTAGNAC G, et al.Pressure-induced Pbca-P21/c phase transition of natural orthoenstatite:the effect of high temperature and its geophysical implications[J].Phys Earth Planet Inter, 2014, 228:150-159. doi: 10.1016/j.pepi.2013.09.008
    [10] YANG H, FINGER L W, CONRAD P G, et al.A new pyroxene structure at high pressure:single-crystal X-ray and Raman study of the Pbcn-P21cn phase transition in protopyroxene[J].Am Mineral, 1999, 84(3):245-256. doi: 10.2138/am-1999-0305
    [11] JACKSON J M, SINOGEIKIN S V, CARPENTER M A, et al.Novel phase transition in orthoenstatite[J].Am Mineral, 2004, 89(1):239-244. doi: 10.2138/am-2004-0128
    [12] MATSUI M, PRICE G D.Computer simulation of the MgSiO3 polymorphs[J].Phys Chem Miner, 1992, 18(6):365-372. doi: 10.1007/BF00199417
    [13] YANG H, PREWITT C T.Chain and layer silicates at high temperatures and pressures[J].Rev Mineral Geochem, 2000, 41(1):211-255. http://adsabs.harvard.edu/abs/2000RvMG...41..211Y
    [14] LIN C C.Pressure-induced metastable phase transition in orthoenstatite (MgSiO3) at room temperature:a Raman spectroscopic study[J].J Solid State Chem, 2003, 174(2):403-411. doi: 10.1016/S0022-4596(03)00278-0
    [15] KUNG J, LI B, UCHIDA T, et al.In situ measurements of sound velocities and densities across the orthopyroxene→high-pressure clinopyroxene transition in MgSiO3 at high pressure[J].Phys Earth Planet Inter, 2004, 147(1):27-44. doi: 10.1016/j.pepi.2004.05.008
    [16] LIN C M, CHAO J L, LIN C C.Metastable phase transition of orthoenstatite (MgSiO3) under high pressure[J].Solid State Sci, 2005, 7(3):293-297. doi: 10.1016/j.solidstatesciences.2004.10.005
    [17] JAHN S.High-pressure phase transitions in MgSiO3 orthoenstatite studied by atomistic computer simulation[J].Am Mineral, 2008, 93(4):528-532. doi: 10.2138/am.2008.2710
    [18] JAHN S.Integral modeling approach to study the phase behavior of complex solids:application to phase transitions in MgSiO3 pyroxenes[J].Acta Crystallogr Sect A, 2010, 66(5):535-541. doi: 10.1107/S0108767310026449
    [19] WOODLAND A B.The orthorhombic to high-p monoclinic phase transition in Mg-Fe pyroxenes:can it produce a seismic discontinuity?[J].Geophys Res Lett, 1998, 25(8):1241-1244. doi: 10.1029/98GL00857
    [20] LI B, KUNG J, LIU W, et al.Phase transition and elasticity of enstatite under pressure from experiments and first-principles studies[J].Phys Earth Planet Inter, 2014, 228:63-74. doi: 10.1016/j.pepi.2013.11.009
    [21] GIANNOZZI P, BARONI S, BONINI N, et al.QUANTUM ESPRESSO:a modular and open-source software project for quantum simulations of materials[J].J Phys:Condens Matter, 2009, 21(39):1-19. doi: 10.1088-0953-8984-21-39-395502/
    [22] CEPERLEY D M, ALDER B J.Ground state of the electron gas by a stochastic method[J].Phys Rev Lett, 1980, 45(7):566-569. doi: 10.1103/PhysRevLett.45.566
    [23] PERDEW J P, ZUNGER A.Self-interaction correction to density-functional approximations for many-electron systems[J].Phys Rev B, 1981, 23(10):5048-5079. doi: 10.1103/PhysRevB.23.5048
    [24] DAL CORSO A, BARONI S, RESTA R, et al.Ab initio calculation of phonon dispersions in Ⅱ-Ⅵ semiconductors[J].Phys Rev B, 1993, 47(7):3588-3592. doi: 10.1103/PhysRevB.47.3588
    [25] VANDERBILT D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Phys Rev B, 1990, 41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892
    [26] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations[J].Phys Rev B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188
    [27] MOLIN G M.Crystal-chemical study of cation disordering in Al-rich and Al-poor orthopyroxenes from spinel lherzolite xenoliths[J].Am Mineral, 1989, 74:593-598. http://cn.bing.com/academic/profile?id=03954abf3a5446155db74c4928b8ac22&encoded=0&v=paper_preview&mkt=zh-cn
    [28] THOMPSON R M, DOWNS R T.Model pyroxenes Ⅰ:ideal pyroxene topologies[J].Am Mineral, 2003, 88(4):653-666. doi: 10.2138/am-2003-0419
    [29] YU Y G, WENTZCOVITCH R M, ANGEL R J.First principles study of thermodynamics and phase transition in low-pressure (P21/c) and high-pressure (C2/c) clinoenstatite MgSiO3[J].J Geophys Res:Solid Earth, 2010, 115(B2):1-10. doi: 10.1029/2009JB006329/full
    [30] HERNÁNDEZ E R, BRODHOLT J, ALFÈ D.Structural, vibrational and thermodynamic properties of Mg2SiO4 and MgSiO3 minerals from first-principles simulations[J].Phys Earth Planet Inter, 2015, 240:1-24. doi: 10.1016/j.pepi.2014.10.007
    [31] JACKSON J M, PALKO J W, ANDRAULT D, et al.Thermal expansion of natural orthoenstatite to 1 473 K[J].Eur J Mineral, 2003, 15(3):469-473. doi: 10.1127/0935-1221/2003/0015-0469
    [32] HUGH-JONES D.Thermal expansion of MgSiO3 and FeSiO3 ortho-and clinopyroxenes[J].Am Mineral, 1997, 82(7/8):689-696. http://adsabs.harvard.edu/abs/1997AmMin..82..689H
    [33] PERIOTTO B, BALIC-ŽUNIC T, NESTOLA F, et al.Re-investigation of the crystal structure of enstatite under high-pressure conditions[J].Am Mineral, 2012, 97(10):1741-1748. doi: 10.2138/am.2012.4157
    [34] JACOBSEN S D, LIU Z, BALLARAN T B, et al.Effect of H2O on upper mantle phase transitions in MgSiO3:is the depth of the seismic X-discontinuity an indicator of mantle water content?[J].Phys Earth Planet Inter, 2010, 183(1):234-244. http://www.sciencedirect.com/science/article/pii/S0031920110001354
    [35] WALKER A M, TYER R P, BRUIN R P, et al.The compressibility and high pressure structure of diopside from first principles simulation[J].Phys Chem Miner, 2008, 35(7):359-366. doi: 10.1007/s00269-008-0229-3
    [36] ANGEL R J, HUGH-JONES D A.Equations of state and thermodynamic properties of enstatite pyroxenes[J].J Geophys Res, 1994, 99(B10):19777-19783. doi: 10.1029/94JB01750
    [37] HATTORI T, NAGAI T, YAMANAKA T, et al.Single-crystal X-ray diffraction study of FeGeO3 high-p clinopyroxene (C2/c) up to 8.2 GPa[J].Am Mineral, 2000, 85(10):1485-1491. doi: 10.2138/am-2000-1018
    [38] PACAL R E G, GASPARIK T.Reversals of the orthoenstatite-clinoenstatite transition at high pressures and high temperatures[J].J Geophys Res:Solid Earth, 1990, 95(B10):15853-15858. doi: 10.1029/JB095iB10p15853
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  7050
  • HTML全文浏览量:  3207
  • PDF下载量:  99
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-04-16

目录

    /

    返回文章
    返回