Numerical Study of Inertial Effects of Concrete-Like Materials in Split Hopkinson Pressure Bar Tests

SHANG Bing WANG Tong-Tong

尚兵, 王彤彤. 混凝土类材料在SHPB实验中惯性效应的数值模拟研究[J]. 高压物理学报, 2017, 31(2): 114-124. doi: 10.11858/gywlxb.2017.02.003
引用本文: 尚兵, 王彤彤. 混凝土类材料在SHPB实验中惯性效应的数值模拟研究[J]. 高压物理学报, 2017, 31(2): 114-124. doi: 10.11858/gywlxb.2017.02.003
SHANG Bing, WANG Tong-Tong. Numerical Study of Inertial Effects of Concrete-Like Materials in Split Hopkinson Pressure Bar Tests[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 114-124. doi: 10.11858/gywlxb.2017.02.003
Citation: SHANG Bing, WANG Tong-Tong. Numerical Study of Inertial Effects of Concrete-Like Materials in Split Hopkinson Pressure Bar Tests[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 114-124. doi: 10.11858/gywlxb.2017.02.003

Numerical Study of Inertial Effects of Concrete-Like Materials in Split Hopkinson Pressure Bar Tests

doi: 10.11858/gywlxb.2017.02.003
Funds: Innovative School Foundation of Guangzhou Maritime University
More Information
    Author Bio:

    SHANG Bing(1979—), male, doctor, lecturer, major in impact mechanics.E-mail:shang@mail.ustc.edu.cn

  • 摘要: 分离式霍普金森压杆(SHPB)被广泛应用于测试混凝土类材料在高应变率(10~103 s-1)下的动态增强效应。为更好地理解这类问题,进行了数值模拟研究,采用J2本构模型研究SHPB试验中的纵向惯性效应,线性Drucker-Prager模型研究SHPB试验中的径向惯性效应。研究结果表明:纵向惯性效应不影响动态增强因子;径向惯性效应对动态增强因子有影响,但不是混凝土类材料在高应变率下动态增强因子提高的最主要原因。

     

  • Figure  1.  DIF versus strain rate[3]

    Figure  2.  Schematic of a SHPB set-up

    Figure  3.  Loading pressure pulse shape

    Figure  4.  Strain histories of points P2 and P5 in the first numerical experimentation

    Figure  5.  Results of trapezoid pulse shape loading

    Figure  6.  Strain histories of points P2 and P5 in the second numerical experimentation

    Figure  7.  Results of sine pulse shape loading

    Figure  8.  Results of wrong time shifting

    Figure  9.  Comparison of input curve with reconstituted curves

    Figure  10.  Diagram of deducting wave propagation

    Figure  11.  Strain histories and stress-strain curves (the value of the loading amplitude is 50 MPa and the strain rate is 40 s-1)

    Figure  12.  Strain histories and stress-strain curves (the value of the loading amplitude is 100 MPa and the strain rate is 110 s-1)

    Figure  13.  Strain histories and stress-strain curves (the value of the loading amplitude is 200 MPa, and the strain rate is 260 s-1)

    Figure  14.  Strain histories and stress-strain curves (the value of the loading amplitude is 300 MPa, and the strain rate is 360 s-1)

  • [1] TAI Y S.Uniaxial compression tests at various loading rates for reactive powder concrete[J].Theor Appl Fract Mech, 2009, 52(1):14-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33877d53996f2426b29c0d0edc3d82ab
    [2] LI Q M, MENG H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J].Int J Solids Struct, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [3] KIM D J, SIRIJAROONCHAI K, EL-TAWIL S, et al.Numerical simulation of the split Hopkinson pressure bar test technique for concrete under compression[J].Int J Impact Eng, 2010, 37(2):141-149. doi: 10.1016/j.ijimpeng.2009.06.012
    [4] BISCHOFF P H, PERRY S H.Compressive behavior of concrete at high strain-rates[J].Mater Struct, 1991, 24(6):425-450. doi: 10.1007/BF02472016
    [5] GORHAM D A.Specimen inertia in high strain-rate compression[J].J Phys D, 1989, 22(12):1888-1893. doi: 10.1088/0022-3727/22/12/014
    [6] DAVIES E D H, HUNTER S C.The dynamic compression testing of solids by the method of the split hopkinson pressure bar[J].J Mech Phys Solids, 1963, 11(3):155-179. doi: 10.1016/0022-5096(63)90050-4
    [7] BERTHOLF L D, KARNES C H.2-Dimensional analysis of split Hopkinson pressure bar system[J].J Mech Phys Solids, 1975, 23(1):1-19. doi: 10.1016/0022-5096(75)90008-3
    [8] GROTE D L, PARK S W, ZHOU M.Dynamic behavior of concrete at high strain rates and pressures:Ⅰ.experimental characterization[J].Int J Impact Eng, 2001, 25(9):869-886. doi: 10.1016/S0734-743X(01)00020-3
    [9] COTSOVOS D M, PAVLOVIC M N.Numerical investigation of RC structural walls subjected to cyclic loading[J].Comput Concrete, 2005, 2(3):215-238. doi: 10.12989/cac.2005.2.3.215
    [10] MOHR D, GARY G, LUNDBERG B.Evaluation of stress-strain curve estimates in dynamic experiments[J].Int J Impact Eng, 2010, 37(2):161-169. doi: 10.1016/j.ijimpeng.2009.09.007
    [11] LU J F, ZHUANG Z, SHIMAMURA K, et al.Application of numerical simulation to SHPB test to investigate the dynamic compressive behavior of material with failure[C]//Progress in Experimental and Computational Mechanics in Engineering.Switzerland, 2003: 433-438.
    [12] LU J F, ZHUANG Z, SHIMAMURA K.Development of a material constitutive for high-rate using a combined experiment/computation method[C]//Advances in Fracture and Failure Prevention.Switzerland, 2004: 269-276.
    [13] LI Q M, MENG H.Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments[J].Int J Impact Eng, 2003, 28(5):537-555. doi: 10.1016/S0734-743X(02)00073-8
    [14] KOLSKY H.An investigation of the mechanical studies in plastic wave propagation[J].J Mech Phys Solids, 1949, 10(10):195-223.
    [15] ZHU J, HU S S, WANG L L.An analysis of stress uniformity for concrete-like specimens during SHPB tests[J].Int J Impact Eng, 2009, 36(1):61-72. doi: 10.1016/j.ijimpeng.2008.04.007
    [16] 尚兵, 胡时胜, 姜锡权.金属材料SHPB实验数据处理的三波校核法[J].爆炸与冲击, 2009, 30(4):429-432. doi: 10.3321/j.issn:1001-1455.2009.04.017

    SHANG B, HU S S, JIANG X Q.A three-wave coupling method for data treatment in SHPB experiments with metal samples[J].Explosion and Shock Waves, 2009, 30(4):429-432. doi: 10.3321/j.issn:1001-1455.2009.04.017
  • 加载中
图(14)
计量
  • 文章访问数:  7233
  • HTML全文浏览量:  3117
  • PDF下载量:  65
出版历程
  • 收稿日期:  2016-01-17
  • 修回日期:  2016-03-13

目录

    /

    返回文章
    返回