5083铝合金宽应变率实验与基于损伤的本构模型研究

高宁 朱志武

高宁, 朱志武. 5083铝合金宽应变率实验与基于损伤的本构模型研究[J]. 高压物理学报, 2017, 31(1): 51-60. doi: 10.11858/gywlxb.2017.01.008
引用本文: 高宁, 朱志武. 5083铝合金宽应变率实验与基于损伤的本构模型研究[J]. 高压物理学报, 2017, 31(1): 51-60. doi: 10.11858/gywlxb.2017.01.008
GAO Ning, ZHU Zhi-Wu. Experimental Study of Wide Strain Rates and Constitutive Model Based on Damage of 5083 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 51-60. doi: 10.11858/gywlxb.2017.01.008
Citation: GAO Ning, ZHU Zhi-Wu. Experimental Study of Wide Strain Rates and Constitutive Model Based on Damage of 5083 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 51-60. doi: 10.11858/gywlxb.2017.01.008

5083铝合金宽应变率实验与基于损伤的本构模型研究

doi: 10.11858/gywlxb.2017.01.008
基金项目: 

国家自然科学基金 11172251

四川省青年科技创新团队 2013TD0004

详细信息
    作者简介:

    高宁(1989—),男,硕士研究生,主要从事铝合金动态本构研究.E-mail:947256459@qq.com

    通讯作者:

    朱志武(1974—),男,博士,副教授,主要从事冻土及金属冲击动态本构研究.E-mail:zzw4455@163.com

  • 中图分类号: O347.3

Experimental Study of Wide Strain Rates and Constitutive Model Based on Damage of 5083 Aluminum Alloy

  • 摘要: 5083铝合金材料在工程领域应用广泛,会受到包括冲击和碰撞等多种不同情况的强动加载,亟需对其宽应变率加载下的力学性能及其本构模型开展研究。首先,对5083铝合金进行了系统的准静态实验及中、高应变率加载下的拉伸和压缩实验,得到了宽应变率加载下的应力-应变曲线。实验结果表明,该材料在同一实验条件下所得到的应力-应变曲线,其强化阶段的拉伸曲线总是低于压缩曲线,并从微观机制上对这一现象进行了合理解释。然后,通过引入损伤,考虑了损伤对该材料拉伸加载情况下的力学性能影响。基于连续介质力学及其实验结果,获得了损伤演化方程。最后,借助改进的Johnson-Cook (JC)本构模型,并基于已确定的损伤演化方程,得到了考虑损伤的5083铝合金本构模型。通过实验曲线与所得模型曲线的对比,吻合良好,表明该模拟具有很好的适用性,能够对该材料的工程应用提供有效的科学依据、分析模型和必要的参考。

     

  • 图  准静态及中、高应变率拉伸实验试样尺寸

    Figure  1.  Sample specifications in quasi-static, middle and high strain rate tensile tests

    图  不同应变率下5083铝合金的拉伸和压缩应力-应变曲线

    Figure  2.  Stress-strain curves of tensile and compression at different strain rates

    图  不同加载应变率时的拉伸和压缩应力-应变曲线

    Figure  3.  Stress-strain curves of tensile and compression at different strain rates

    图  拉伸应力与压缩应力的差值随应变的变化

    Figure  4.  Difference between the tensile stress and compressive stress varying with strain

    图  相同应变下拉伸与压缩的应力差值随应变的变化

    Figure  5.  Difference of tensile stress and compression stress varying with strain at the same strain

    图  不同应变率下损伤随应变的演化规律

    Figure  6.  Evolution law of damage varying with strain at different strain rates

    图  一定应变率下不同的拉伸和压缩应变对应的应力值

    Figure  7.  Stress value of the different tensile strain and compressive strain at certain strain rates

    图  准静态下拉伸和压缩理论曲线与实验曲线的对比

    Figure  8.  Comparison of theoretical curves with experimental curves of tension and compression in quasi-static state

    图  高应变率下拉伸和压缩理论曲线与实验曲线的对比

    Figure  9.  Comparison of theoretical curves with experimental curves of tension and compression at high strain rates

    图  10  其他应变率下拉伸和压缩理论曲线与实验曲线的对比

    Figure  10.  Comparison of theoretical curves and experimental curves of tension and compression at other strain rates

    表  1  5083铝合金化学成分

    Table  1.   Chemical composition of 5083 aluminum alloy

    (%)
    Mg Mn Si Zn Ti Cu Cr Fe
    4.0-4.9 0.40-1.00 ≤0.40 ≤0.25 ≤0.15 ≤0.10 0.05-0.25 0.0-0.4
    下载: 导出CSV

    表  2  压缩实验试样尺寸

    Table  2.   Sample specifications in compression tests

    $ \dot \varepsilon $/(s-1) d/(mm) h/(mm)
    0.000 2, 1 270-2 700 10 8
    0.001, 2 700-3 800 10 6
    0.01, 2 100-7 130 6 4
    下载: 导出CSV

    表  3  屈服应力随应变率的变化关系

    Table  3.   Variation of yield stress with strain rates

    $ \dot \varepsilon $/(s-1) σs/(MPa)
    0.000 2 152.21
    0.010 0 151.21
    1 150.54
    10 149.31
    100 166.11
    400 177.66
    下载: 导出CSV

    表  4  应变率敏感系数

    Table  4.   Strain rate sensitivity coefficient

    λ Sensitivity coefficient
    Tension Compression
    λ1 -3.698 61 -4.440 0
    λ2 8.660 89 5.809 4
    下载: 导出CSV

    表  5  5083铝合金的JC模型参数

    Table  5.   JC model parameters of 5083 aluminum alloy

    A n C1 C2 Dk e f p q εth
    149.3 0.626 6 -0.002 97 0.018 01 0.110 7 -0.004 75 0.149 4 6.824 6 -1.447 5 0.002 42
    下载: 导出CSV
  • [1] BENALLAL A, BERSTAD T, BØRVIK T, et al.An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin-Le Chatelier effect [J].Int J Plant Sci, 2008, 24:1916-1945. http://www.sciencedirect.com/science/article/pii/S0749641908000570
    [2] CLAUSEN A H, BØRVIK T, HOPPERSTAD O S, et al.Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality [J].Mat Sci Eng R, 2004, A364:260-272. http://www.sciencedirect.com/science/article/pii/S0921509303007032
    [3] 苗建芸.5083铝合金的超塑性研究[D].南京: 南京航空航天大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D052398

    MIAO J Y.Research on the superplasticity of aluminium alloy 5083 [D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D052398
    [4] 徐雪峰.5083铝合金力学性能及超塑性成形数值模拟与实验研究[D].南京: 南京航空航天大学, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1855055

    XU X F.Research on mechanical behavior and simulation and experiment of superplastic forming of 5083 aluminum alloy [D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1855055
    [5] 徐清波, 陶友瑞, 米芳.5083铝合金高温流变本构关系研究[J].矿冶工程, 2013, 33(5):124-126. doi: 10.3969/j.issn.0253-6099.2013.05.031

    XU Q B, TAO Y R, MI F.Constitutive equation of rheological properties for 5083 aluminum alloy at elevated temperature [J].Min Metal Eng, 2013, 33(5):124-126. doi: 10.3969/j.issn.0253-6099.2013.05.031
    [6] 晏宁, 康国政, 朱志武.5083H111铝合金宽应变率拉伸动态本构模型[J].固体力学学报, 2014, 35(3):259-265. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014254635.htm

    YAN N, KANG G Z, ZHU Z W.Tensile dynamic constitutive model of 5083H111 aluminum alloy at a wide range of strain rates [J].Acta Mech Solid Sin, 2014, 35(3):259-265. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014254635.htm
    [7] KACHANOV L M.On the time to failure under creep condition [J].Izvestia Academii Nauk Sssr Otdelenie Tekhnicheskich Nauk, 1958, 8:26-31. http://d.old.wanfangdata.com.cn/Periodical/ytlx201801007
    [8] LEMAITRE J.A contiuous damage mechanics model for ductile fracture [J].Eng Mater Tech, 1985, 107(1):83-89. doi: 10.1115/1.3225775
    [9] CHABOCHE J L.Continuum damage mechanics:present state and future trend [J].Nucl Eng Des, 1987, 105(1):19-33. doi: 10.1016/0029-5493(87)90225-1
    [10] GURSON A L.Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction [D].Providence, RI: Brown University, 1975.
    [11] GURSON A L.Continuum theory of ductile rupture by viod nucleation and growth [J].Eng Mater Tech, 1977, 99(2):2-15. http://cn.bing.com/academic/profile?id=0c51c627757e6c5eb365384bd6b3a7a9&encoded=0&v=paper_preview&mkt=zh-cn
    [12] WU S C, LIANG H.A kinetice quation for ductile damage at large plastic strain [J].J Mater Process Manu, 1992, 21(3):295- 302.
    [13] 高玉华.铝合金LC4和LC12CZ在高应变率拉伸和压缩下的本构关系[J].材料科学与工艺, 1994, 2(2):24-29. http://www.cnki.com.cn/Article/CJFDTotal-CLKG402.005.htm

    GAO Y H.Dynamic compression and tensile properties of Al alloys LC4 and LY12CZ at high strain rate [J].Mater Sci Technol, 1994, 2(2):24-29. http://www.cnki.com.cn/Article/CJFDTotal-CLKG402.005.htm
    [14] 孙瑞雪, 徐磊, 赵文博.不同应变速率下5083铝合金的拉伸性能及断口形貌[J].轻金属, 2012(8):59-61. doi: 10.3969/j.issn.1002-1752.2012.08.016

    SUN R X, XU L, ZHAO W B.The tensile properties and fracture morphologies of 5083 aluminum alloy under different strain rates [J].Light Metals, 2012(8):59-61. doi: 10.3969/j.issn.1002-1752.2012.08.016
    [15] 李玉兰.真应力-应变的定义及其力学特征[J].重庆大学学报, 2001, 24(3):58-60. http://d.old.wanfangdata.com.cn/Periodical/cqdxxb200103016

    LI Y L.Definition and mechanical characteristics of true stress-strain [J].Journal of Chongqing University, 2001, 24(3):58-60. http://d.old.wanfangdata.com.cn/Periodical/cqdxxb200103016
    [16] 郭伟国.4种新型舰艇钢的塑性流变应力及其本构模型[J].金属学报, 2006, 42(5):463-468. doi: 10.3321/j.issn:0412-1961.2006.05.004

    GUO W G.Plastic flow stresses and constitutive models of four newer naval vessel steels [J].Acta Metall, 2006, 42(5):463-468. doi: 10.3321/j.issn:0412-1961.2006.05.004
    [17] 陈增涛, 王铎.高应变率下金属塑性损伤的形核机理[J].材料料学与工程, 1995, 13(1):51-55. doi: 10.4161-cc.9.8.11487/

    CHEN Z T, WANG D.Nucleation mechanism of plastic damage in metals under high strain rate [J].Materials Science and Engineering, 1995, 13(1):51-55. doi: 10.4161-cc.9.8.11487/
    [18] 刘旭红, 黄西成, 陈裕泽, 等.强动载荷下金属材料塑性变形本构模型评述[J].力学进展, 2007, 37(3):362-363. http://d.old.wanfangdata.com.cn/Periodical/lxjz200703004

    LIU X H, HUANG X C, CHEN Y Z, et al.A review on constitutive models for plastic deformation of metal materials under dynamic loading [J].Advances in Mechanics, 2007, 37(3):362-363. http://d.old.wanfangdata.com.cn/Periodical/lxjz200703004
    [19] 贺红亮.延性金属动态拉伸断裂的损伤演化[C]//中国力学学会学术大会.郑州, 2009: 29-30. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200908008069.htm

    HE H L.Damage evolution for dynamic tensile fracture of ductile metal [C]//Chinese Conference of Theoretical and Applied Mechanics.Zhengzhou, 2009: 29-30. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200908008069.htm
    [20] 王礼立, 董新龙, 孙紫建.高应变率下计及损伤演化的材料动态本构行为[J].爆炸与冲击, 2006, 26(3):193-198. doi: 10.3321/j.issn:1001-1455.2006.03.001

    WANG L L, DONG X L, SUN Z J.Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution [J].Explosion and Shock Waves, 2006, 26(3):193-198. doi: 10.3321/j.issn:1001-1455.2006.03.001
    [21] JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//7th International Symposium on Ballistics.The Hague, Netherlands, 1983: 541-547.
    [22] 尚福林, 王子昆.塑性力学基础[M].西安:西安交通大学出版社, 2011:3.

    SHANG F L, WANG Z K.Plastic mechanics basis [M].Xi'an:Xi'an Jiaotong University Press, 2011:3.
    [23] 王礼立, 胡时胜.铝合金LF6R和纯铝L4R在高应变率下的动态应力应变关系[J].固体力学学报, 1986(2):163-166. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GTLX198602010&dbname=CJFD&dbcode=CJFQ

    WANG L L, HU S S.Dynamic stress-stain relations of Al alloy LF6R and Al L4R under high strain rates [J].Acta Mech Solid Sin, 1986(2):163-166. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GTLX198602010&dbname=CJFD&dbcode=CJFQ
    [24] 宋玉泉, 程永春, 刘颍.拉伸变形应变硬化指数的力学涵义及其规范测量[J].中国科学, 2000, 30(3):200-207. http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce200003002

    SONG Y Q, CHENG Y C, LIU Y.Mechanical meaning and metrical standardization of strain hardening index in tensile deformation [J].Science in China, 2000, 30(3):200-207. http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce200003002
    [25] 林木森, 庞宝君, 张伟, 等.5A06铝合金的动态本构关系实验[J].爆炸与冲击, 2009, 29(3):306-311. doi: 10.3321/j.issn:1001-1455.2009.03.014

    LIN M S, PANG B J, ZHANG W, et al.Experimental investigation on a dynamic constitutive relationship of 5A06 Al alloy [J].Explosion and Shock Waves, 2009, 29(3):306-311. doi: 10.3321/j.issn:1001-1455.2009.03.014
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  7712
  • HTML全文浏览量:  3518
  • PDF下载量:  111
出版历程
  • 收稿日期:  2015-12-13
  • 修回日期:  2016-02-27

目录

    /

    返回文章
    返回