弹体边界效应对2A12薄靶抗撞击性能影响的数值模拟

李剑峰 邓云飞 贾宝惠

李剑峰, 邓云飞, 贾宝惠. 弹体边界效应对2A12薄靶抗撞击性能影响的数值模拟[J]. 高压物理学报, 2017, 31(1): 42-50. doi: 10.11858/gywlxb.2017.01.007
引用本文: 李剑峰, 邓云飞, 贾宝惠. 弹体边界效应对2A12薄靶抗撞击性能影响的数值模拟[J]. 高压物理学报, 2017, 31(1): 42-50. doi: 10.11858/gywlxb.2017.01.007
LI Jian-Feng, DENG Yun-Fei, JIA Bao-Hui. Numerical Simulation of Influence of Projectiles' Boundary Effect on Ballistic Resistance Property of 2A12 Aluminum Alloy Targets[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 42-50. doi: 10.11858/gywlxb.2017.01.007
Citation: LI Jian-Feng, DENG Yun-Fei, JIA Bao-Hui. Numerical Simulation of Influence of Projectiles' Boundary Effect on Ballistic Resistance Property of 2A12 Aluminum Alloy Targets[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 42-50. doi: 10.11858/gywlxb.2017.01.007

弹体边界效应对2A12薄靶抗撞击性能影响的数值模拟

doi: 10.11858/gywlxb.2017.01.007
基金项目: 

中央高校基本科研业务费资助项目 Y15-04

详细信息
    作者简介:

    李剑峰(1993—),男,硕士研究生,主要从事冲击动力学研究.E-mail:13512013505@163.com

  • 中图分类号: O347;O385

Numerical Simulation of Influence of Projectiles' Boundary Effect on Ballistic Resistance Property of 2A12 Aluminum Alloy Targets

  • 摘要: 利用有限元软件ABAQUS建立仿真模型,研究不同边界条件的弹体撞击2 mm厚的2A12铝合金靶体,得出初始结构目标剩余速度和弹道极限速度。根据仿真结果,分析弹体边界效应对靶板失效模式以及抗侵彻性能的影响。研究结果表明,弹体的边界效应对于靶体的剩余速度影响很小,当弹体初速较高时几乎可以忽略不计,而对于靶体的失效模式影响则较大,内凹过渡弹体撞击靶体所产生的整体变形和裂纹扩展程度最高,其次分别为斜切过渡、外凸过渡和垂直过渡。此外,弹体的初始速度也会影响到靶体的结构变形,影响程度与弹体的边界效应有关。

     

  • 图  弹体形状及尺寸(单位:mm)

    Figure  1.  Geometry of projectiles (unit:mm)

    图  弹靶有限元模型(垂直过渡弹体)

    Figure  2.  Finite element models of targets and projectiles (vertical-transited projectile)

    图  网格过渡方法(垂直过渡弹体)

    Figure  3.  Finite element model of impacted zone (vertical-transited projectile)

    图  弹体贯穿靶体的初始-剩余速度关系曲线

    Figure  4.  Residual velocity versus initial velocity for targets

    图  2A12薄靶对不同弹体撞击的动能变化与初始速度的关系

    Figure  5.  Kinetic energy variable versus initial velocity for 2A12 targets to different nose shape projectiles

    图  数值模拟得到的垂直过渡弹体贯穿单层靶图像(vi=100.5 m/s, vr=59.44 m/s)

    Figure  6.  Pictures of targets perforated by vertical-projectiles for numerical simulations (vi=100.5 m/s, vr=59.44 m/s)

    图  数值模拟得到的外凸过渡弹体贯穿单层靶图像(vi=100 m/s, vr=57.34 m/s)

    Figure  7.  Pictures of targets perforated by convex-projectiles for numerical simulations (vi=100 m/s, vr=57.34 m/s)

    图  数值模拟得到的斜切过渡弹体贯穿单层靶图像(vi=100 m/s, vr=57.04 m/s)

    Figure  8.  Pictures of targets perforated by bevel-projectiles for numerical simulations (vi=100 m/s, vr=57.04 m/s)

    图  数值模拟得到的内凹过渡弹体贯穿单层靶图像(vi=100 m/s, vr=49.72 m/s)

    Figure  9.  Pictures of targets perforated by concave-projectiles for numerical simulations (vi=100 m/s, vr=49.72 m/s)

    表  1  2A12所有模型参数[9]

    Table  1.   Model parameters of 2A12[9]

    E/(GPa)Tr/(K)Tm/(K)m${{\dot \varepsilon }_0}$/(s-1)c2/(MPa)
    71.72938631.4261.11×10-3288.0
    c1ωA/(MPa)σu/(MPa)εuC
    0.071 30.0400.0635.00.125 50.001
    D1D2D3D4D5D6
    0.1160.211-2.1720.012-0.012 5613.04
    下载: 导出CSV

    表  2  硬38CrSi钢的模型参数[12]

    Table  2.   Model parameters of hard 38CrSi steel[12]

    E/(GPa)νρ/(kg/m3)σ0/(MPa)Et/(MPa)
    2040.337 8501 90015 000
    下载: 导出CSV

    表  3  数值模拟结果

    Table  3.   Data of numerical simulations

    VerticalConvexBevelConcave
    vi/(m/s)vr/(m/s)vi/(m/s)vr/(m/s)vi/(m/s)vr/(m/s)vi/(m/s)vr/(m/s)
    89.310850852.31850
    93.1329.269030.899029.729019.98
    96.0045.299547.359546.339531.29
    100.5059.4410057.3410057.0410049.72
    101.0560.6711076.7611074.7411069.44
    103.5366.6112092.3812089.7112085.16
    114.7886.89130105.49130103.4313099.52
    132.42111.69140118.38140116.61140113.39
    142.22122.02150130.68150128.56150125.17
    下载: 导出CSV

    表  4  弹体对靶体的弹道极限及模型参数

    Table  4.   Ballistic limits and model constants of targets against projectiles

    Projectile modeavbl/(m/s)p
    Vertical0.9890.82.75
    Convex0.9886.82.46
    Bevel0.9787.12.45
    Concave0.9689.52.40
    下载: 导出CSV
  • [1] BϑRVIK T, LANGSETH M, HOPPERSTAD O S, et al.Ballistic penetration of steel plates[J].Int J Impact Eng, 1999, 22(9/10):855-886. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_36278031d934370d0099c597aff9631b
    [2] BϑRVIK T, HOPPERSTAD O S, BERSTAD T, et al.A computational model of viscoplasticity and ductile damage for impact and penetration[J].Euro J Mech A/Solids, 2001, 20(5):685-712. doi: 10.1016/S0997-7538(01)01157-3
    [3] RUSINEK A, RODRÍGUEZ-MARTÍNEZ J A, ARIAS A, et al.Influence of conical projectile diameter on perpendicular impact of thin steel plate[J].Eng Fract Mech, 2008, 75(10):2946-2967. doi: 10.1016/j.engfracmech.2008.01.011
    [4] GUPTA N K, IQBAL M A, SEKHON G S.Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt-and hemispherical-nosed projectiles[J].Int J Impact Eng, 2006, 32(12):1921-1944. doi: 10.1016/j.ijimpeng.2005.06.007
    [5] 张伟, 魏刚, 肖新科.7A04高强铝合金抗杆弹正撞击性能实验研究[J].高压物理学报, 2011, 25(5):401-406. http://www.gywlxb.cn/CN/abstract/abstract1392.shtml

    ZHANG W, WEI G, XIAO X K.Experimental study on ballistic resistance property of 7A04 aluminum against rod projectiles impact[J].Chinese Journal of High Pressure Physics, 2011, 25(5):401-406. http://www.gywlxb.cn/CN/abstract/abstract1392.shtml
    [6] 邓云飞, 张伟, 曹宗胜.间隙对A3钢薄板抗卵形头弹侵彻性能影响的实验研究[J].振动与冲击, 2013, 32(12):95-99. doi: 10.3969/j.issn.1000-3835.2013.12.018

    DENG Y F, ZHANG W, CAO Z S.Effect of gap on behavior of a double-layered A3 steel shield against penetration of ogival rigid projectiles[J].Journal of Vibration and Shock, 2013, 32(12):95-99. doi: 10.3969/j.issn.1000-3835.2013.12.018
    [7] XIAO X K, ZHANG W, WEI G, et al.Effect of projectile hardness on deformation and fracture behavior in the Taylor impact test [J].Mater Design, 2010, 31(10):4913-4920. doi: 10.1016/j.matdes.2010.05.027
    [8] 张伟, 肖新科, 魏刚.7A04铝合金的本构关系和失效模型[J].爆炸与冲击, 2011, 31(1):81-87. http://d.old.wanfangdata.com.cn/Periodical/bzycj201101014

    ZHANG W, XIAO X K, WEI G.Constitutive relation and fracture model of 7A04 aluminum alloy [J].Explosion and Shock Waves, 2011, 31(1):81-87. http://d.old.wanfangdata.com.cn/Periodical/bzycj201101014
    [9] 张伟, 魏刚, 肖新科.2A12铝合金本构关系和失效模型[J].兵工学报, 2013, 34(3):276-282. http://d.old.wanfangdata.com.cn/Periodical/bgxb201303004

    ZHANG W, WEI G, XIAO X K.Constitutive relation and fracture criterion of 2A12 aluminum alloy [J].Acta Armamentarii, 2013, 34(3):276-282. http://d.old.wanfangdata.com.cn/Periodical/bgxb201303004
    [10] LING Y.Uniaxial true stress-strain after necking[J].AMP Journal of Technology, 1996(5):37-48. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221015086/
    [11] 魏刚.铝合金板抗杆弹撞击性能研究[D].哈尔滨: 哈尔滨工业大学, 2010: 16-19. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011261371.htm

    WEI G.Invesgation of deformation and fracture behavior associated mechanisms of the metal kinetic energy projectiles[D].Harbin: Harbin Institute of Technology, 2010: 16-19. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011261371.htm
    [12] BϑRVIK T, HOPPERSTAD O S, BERSTAD T, et al.A computational model of viscoplasticity and ductile damage for impact and penetration[J].Euro J Mech A/Solids, 2001, 20(5):685-712. doi: 10.1016/S0997-7538(01)01157-3
    [13] 孟凡柱.铝合金板抗刚性弹体撞击性能研究[D].天津: 中国民航大学, 2014: 42-44.

    MENG F Z.Invisitigationon the ballistic resistence property of aluminum alloy targets [D].Tianjin: Civil Aviation University of China, 2014: 42-44.
    [14] RECHT R F, IPSON T W.Ballistic perforation dynamics [J].J Appl Mech, 1963, 30(3):384-391. doi: 10.1115/1.3636566
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  7111
  • HTML全文浏览量:  3024
  • PDF下载量:  115
出版历程
  • 收稿日期:  2015-07-11
  • 修回日期:  2015-09-15

目录

    /

    返回文章
    返回