基于FEM/SPH算法弹丸侵彻多孔陶瓷板的数值模拟

王志远 王凤英 刘天生 岳继伟 柴艳军

王志远, 王凤英, 刘天生, 岳继伟, 柴艳军. 基于FEM/SPH算法弹丸侵彻多孔陶瓷板的数值模拟[J]. 高压物理学报, 2017, 31(1): 35-41. doi: 10.11858/gywlxb.2017.01.006
引用本文: 王志远, 王凤英, 刘天生, 岳继伟, 柴艳军. 基于FEM/SPH算法弹丸侵彻多孔陶瓷板的数值模拟[J]. 高压物理学报, 2017, 31(1): 35-41. doi: 10.11858/gywlxb.2017.01.006
WANG Zhi-Yuan, WANG Feng-Ying, LIU Tian-Sheng, YUE Ji-Wei, CHAI Yan-Jun. Numerical Simulation of Projectile Penetration into Porous Ceramic Plates Based on FEM/SPH Algorithm[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 35-41. doi: 10.11858/gywlxb.2017.01.006
Citation: WANG Zhi-Yuan, WANG Feng-Ying, LIU Tian-Sheng, YUE Ji-Wei, CHAI Yan-Jun. Numerical Simulation of Projectile Penetration into Porous Ceramic Plates Based on FEM/SPH Algorithm[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 35-41. doi: 10.11858/gywlxb.2017.01.006

基于FEM/SPH算法弹丸侵彻多孔陶瓷板的数值模拟

doi: 10.11858/gywlxb.2017.01.006
基金项目: 

国家自然科学基金 11572292

详细信息
    作者简介:

    王志远(1990—),男,硕士研究生,主要从事武器系统防护工程研究.E-mail: 987551994@qq.com

  • 中图分类号: O385

Numerical Simulation of Projectile Penetration into Porous Ceramic Plates Based on FEM/SPH Algorithm

  • 摘要: 基于军用人员运输和弹药运输车辆对小型动能弹的防护需求,多孔板作为新型防护装甲可以在保证防护作用的前提下实现装甲防护轻量化。关于陶瓷多孔板的装甲防护性能研究较少。基于LS-DYNA 3D软件,应用FEM/SPH耦合算法对弹丸侵彻不同形状(三角形、圆形、正方形)孔结构的AD95陶瓷多孔板进行了数值模拟。通过计算得出不同形状多孔板的相对防护系数,比较弹丸的剩余速度及动能, 可以优选出防护性能最佳、质量更轻的多孔板。研究发现,圆孔板抗弹性能最优,并且FEM/SPH耦合算法能形象地模拟陶瓷的开裂、飞溅现象,与实际情况吻合更好。

     

  • 图  计算模型和不同孔形多孔板

    Figure  1.  Computational model and plates with holes of different shapes

    图  动能弹侵彻陶瓷板60 μs时两种算法的效果图

    Figure  2.  Design sketch of ceramic plates dip-penetrated by KE-projectile on two algorithms at 60 μs

    图  两种算法陶瓷板及背板的能量变化曲线

    Figure  3.  Energy curves of ceramic and rear plates obtained by two algorithms

    图  不同孔形陶瓷板100 μs时应力分布云图

    Figure  4.  Stress contours of different holes ceramic plates at 100 μs

    图  弹丸动能速度和各板能量的变化曲线

    Figure  5.  Energy curves of bullet and plate on different hole plates

    表  1  弹体与靶板模型参数

    Table  1.   Model parameters of bullet and target

    Materialρ/(g/cm3)A/(GPa)B/(GPa)cnmTm/(K)
    45 Steel7.831.600.220.0200.081.01 520
    603 Steel7.851.750.210.0170.071.01 660
    下载: 导出CSV

    表  2  AD95陶瓷JH-2模型参数[7]

    Table  2.   JH-2 model parameters of AD95 ceramic[7]

    ρ/(g/cm3)ANCT/(GPa)BMνHEL/(GPa)σHEL/(GPa)
    3.60.880.640.0070.2620.280.605.33.75
    pHEL/(GPa)G/(GPa)K1/(GPa)K2/(GPa)K3/(GPa)βD1D2σf, max
    2.8118.1228.6191.4111.51.00.020.830.5
    下载: 导出CSV

    表  3  不同孔形板的防护系数

    Table  3.   Protection factors of plates with different holes

    Hole
    structure
    Penetrating
    degree/(°)
    Twp/(mm)Tb/(mm)δt/(mm)ρt /(g/cm3)Protection
    factor
    NR
    Triangle601.57.8103.611.3791.156
    902.67.8103.611.1381.107
    Circle601.27.8103.411.5291.282
    902.37.8103.411.2721.239
    Square601.67.8103.311.4791.239
    902.77.8103.311.2071.174
    None600.87.8104.611.193
    901.87.8104.611.028
    下载: 导出CSV
  • [1] 王建波.孔钢板抗小口径动能弹效能分析与仿真[D].南京: 南京理工大学, 2012: 8-20. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013166635.htm

    WANG J B.Effect analysis and simulation for multi-hole steel plate anti small caliber kinetic projectile[D].Nanjing: Nanjing University of Science and Technology, 2012: 8-20. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013166635.htm
    [2] 朱易, 黄正祥, 朱旭东, 等.爆炸载荷下蜂窝夹层复合结构吸能特性研究[J].弹箭与制导学报, 2014, 34(3):194-198. doi: 10.3969/j.issn.1673-9728.2014.03.050

    ZHU Y, HUANG Z X, ZHU X D, et al.Research on energy absorption properties of honeycomb sandwich composite structure under explosive load[J].Journal of Projectiles, Rockets, Missile and Guidance, 2014, 34(3):194-198. doi: 10.3969/j.issn.1673-9728.2014.03.050
    [3] 井玉安, 果世驹, 韩静涛.钢/Al2O3陶瓷/钢轻型复合装甲板抗弹性能[J].北京科技大学学报, 2007, 4(4):402-407. doi: 10.3321/j.issn:1001-053X.2007.04.013

    JING Y A, GUO S J, HAN J T.Ballistic property of steel/ceramic/steel composite armor[J].Journal of University of Science and Technology Beijing, 2007, 4(4):402-407. doi: 10.3321/j.issn:1001-053X.2007.04.013
    [4] 纪冲, 龙源, 方向.基于FEM/SPH耦合法的弹丸侵彻钢纤维混凝土数值模拟[J].振动与冲击, 2010, 29(7):71-73. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZDCJ201007015&dbname=CJFD&dbcode=CJFQ

    JI C, LONG Y, FANG X.Numerical simulation of projectile penetration into steel concrete based on FEM/SPH algorithm[J].Journal of Vibration and Shock, 2010, 29(7):71-73. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZDCJ201007015&dbname=CJFD&dbcode=CJFQ
    [5] 王凤英, 刘迎彬, 刘天生, 等.强冲击载荷下氧化铝陶瓷靶破坏过程的SPH数值模拟[J].高压物理学报, 2012, 26(4):415-419. http://www.gywlxb.cn/CN/abstract/abstract1482.shtml

    WANG F Y, LIU Y B, LIU T S, et al.Numerical simulation of the destructive process of shock-loaded alumina ceramics using smoothed particle hydrodynamics[J].Chinese Journal of High Pressure Physics, 2012, 26(4):415-419. http://www.gywlxb.cn/CN/abstract/abstract1482.shtml
    [6] 卞梁, 王肖钧, 章杰.SPH/FEM耦合算法在陶瓷复合靶抗侵彻数值模拟中的应用[J].高压物理学报, 2010, 24(3):161-167. doi: 10.3969/j.issn.1000-5773.2010.03.001

    BIAN L, WANG X J, ZHANG J.Numerical simulations of anti-penetration of confined ceramic targets by SPH/FEM coupling method[J].Chinese Journal of High Pressure Physics, 2010, 24(3):161-167. doi: 10.3969/j.issn.1000-5773.2010.03.001
    [7] 李平.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D].北京: 北京理工大学, 2002: 19-21. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y461486

    LI P.Dynamic mechanical response of ceramic materials and their resistance mechanism of long-rod penetration[D].Beijing: Beijing Institute of Technology, 2002: 19-21. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y461486
    [8] 赵国志.穿甲工程力学[M].北京:兵器工业出版社, 1992:106-107.

    ZHAO G Z, Armor piercing engineering mechanics [M].Beijing:Ordnance Industry Press, 1992:106-107.
    [9] 张自强, 赵宝荣, 张锐生, 等.装甲防护技术基础[M].北京:兵器工业出版社, 2000:45-47.

    ZHANG Z Q, ZHAO B R, ZHANG R S, et al.Armor protection technology [M].Beijing:Weapon Industry Press, 2000:45-47.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  7370
  • HTML全文浏览量:  2618
  • PDF下载量:  96
出版历程
  • 收稿日期:  2016-03-25
  • 修回日期:  2016-05-17

目录

    /

    返回文章
    返回