四甲基硅烷的高压拉曼散射研究

秦振兴 张建波

秦振兴, 张建波. 四甲基硅烷的高压拉曼散射研究[J]. 高压物理学报, 2016, 30(5): 375-379. doi: 10.11858/gywlxb.2016.05.005
引用本文: 秦振兴, 张建波. 四甲基硅烷的高压拉曼散射研究[J]. 高压物理学报, 2016, 30(5): 375-379. doi: 10.11858/gywlxb.2016.05.005
QIN Zhen-Xing, ZHANG Jian-Bo. Raman Scattering Investigation of Tetramethylsilane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 375-379. doi: 10.11858/gywlxb.2016.05.005
Citation: QIN Zhen-Xing, ZHANG Jian-Bo. Raman Scattering Investigation of Tetramethylsilane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 375-379. doi: 10.11858/gywlxb.2016.05.005

四甲基硅烷的高压拉曼散射研究

doi: 10.11858/gywlxb.2016.05.005
基金项目: 

国家自然科学基金青年科学基金 51502189

太原科技大学博士启动项目 20132010

太原科技大学博士启动项目 20132011

山西省青年科技研究基金 2015021017

山西省高等学校科技创新项目 2015167

详细信息
    作者简介:

    秦振兴(1982-), 男, 博士, 讲师, 主要从事高压下富氢材料的金属化和超导电性研究.E-mail:qzx.qzx@qq.com

  • 中图分类号: O521.2

Raman Scattering Investigation of Tetramethylsilane under High Pressure

  • 摘要: 选用四甲基硅烷作为富氢电子材料,利用拉曼光谱,分析其在室温高压(68.9~142.2 GPa)下的振动模式和结构特性。结果表明:随着压力的增大,四甲基硅烷仅保留常压下的3个振动模式,且均被压力锁定;从72.2 GPa开始,出现了新的振动模式,且均随着压力的增大而发生软化,预示着四甲基硅烷可能即将半金属化。

     

  • 图  常压和68.9 GPa压力下TMS的拉曼光谱(插图显示TMS的分子结构)

    Figure  1.  Raman spectra of TMS under ambient pressure and 68.9 GPa (The insert shows the molecular structure of TMS)

    图  TMS的高压拉曼光谱

    Figure  2.  Raman spectra of TMS under high pressures

    图  TMS拉曼振动模式的频移与压力的关系(实心符号表示原有模式,空心符号表示新模式,100.6 GPa处的竖直虚线表示相界,插图显示显微镜观测的样品腔形态)

    Figure  3.  Raman shifts vs. pressure for the observed modes of TMS (The solid and hollow symbols represent original and new modes respectively, and the vertical dashed line under 100.6 GPa indicates the proposed phase boundary.The insets show the stressed samples via a microscope)

    表  1  常压和高压下观测的TMS拉曼振动模式的类别和峰位

    Table  1.   Raman shifts and assignments of the observed vibrational modes of TMS under ambient and high pressures

    Vibrational mode Vibrational type Raman shift/(cm-1)
    0.1 MPa 68.9 GPa 72.2 GPa 84.4 GPa 100.6 GPa 122.1 GPa
    ν1 E(C─Si─C skeletal deformation) 201
    ν2 F2(C─Si─C skeletal deformation) 244
    ν3 A1(C─Si skeletal stretch) 595 848 853 865 872 869
    ν4 F2(C─Si skeletal stretch) 697
    ν5 E(CH3 rocking), F2(CH3 rocking) 869 968 976 971 970 983
    ν6 A1(CH3 symmetrical deformation), F2(CH3 symmetrical deformation) 1 265
    ν7 E(CH3 nonsymmetrical deformation), F2(CH3 nonsymmetrical deformation) 1 420
    ν8 E(CH3 symmetrical stretch), F2(CH3 symmetrical stretch) 2 903 3 214 3 218 3 236 3 259 3 296
    ν9 E(CH3 nonsymmetrical stretch), F2(CH3 nonsymmetrical stretch) 2 963
    ν10 3 649 3 465
    ν11 3 924 3 827 3 801 3 634
    ν12 3 922 3 903
    下载: 导出CSV
  • [1] GINZBURG V L.Nobel lecture:on superconductivity and superfluidity (what I have and have not managed to do) as well as on the "physical minimum" at the beginning of the 21st century[J].Rev Mod Phys, 2004, 76(3):981-998. doi: 10.1103/RevModPhys.76.981
    [2] ASHCROFT N W.Metallic hydrogen:a high-temperature superconductor?[J].Phys Rev Lett, 1968, 21(26):1748-1749. doi: 10.1103/PhysRevLett.21.1748
    [3] RICHARDSON C F, ASHCROFT N W.High temperature superconductivity in metallic hydrogen:electron-electron enhancements[J].Phys Rev Lett, 1997, 78(1):118-121. http://adsabs.harvard.edu/abs/1997PhRvL..78..118R
    [4] HOWIE R T, GUILLAUME C L, SCHELER T, et al.Mixed molecular and atomic phase of dense hydrogen[J].Phys Rev Lett, 2012, 108(12):125501. doi: 10.1103/PhysRevLett.108.125501
    [5] ZHA C S, LIU Z, HEMLEY R J.Synchrotron infrared measurements of dense hydrogen to 360 GPa[J].Phys Rev Lett, 2012, 108(14):146402. doi: 10.1103/PhysRevLett.108.146402
    [6] ASHCROFT N W.Hydrogen dominant metallic alloys:high temperature superconductors?[J].Phys Rev Lett, 2004, 92(18):187002. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212330369/
    [7] CHEN X J, STRUZHKIN V V, SONG Y, et al.Pressure-induced metallization of silane[J].Proc Natl Acad Sci, 2008, 105(1):20-23. doi: 10.1073/pnas.0710473105
    [8] EREMETS M I, TROJAN I A, MEDVEDEV S A, et al.Superconductivity in hydrogen dominant materials:silane[J].Science, 2008, 319(5869):1506-1509. doi: 10.1126/science.1153282
    [9] HANFLAND M, PROCTOR J E, GUILLAUME C L, et al.High-pressure synthesis, amorphization, and decomposition of silane[J].Phys Rev Lett, 2011, 106(9):095503. doi: 10.1103/PhysRevLett.106.095503
    [10] STROBEL T A, GONCHAROV A F, SEAGLE C T, et al.High-pressure study of silane to 150 GPa[J].Phys Rev B, 2011, 83(14):144102. doi: 10.1103/PhysRevB.83.144102
    [11] SCHELER T, DEGTYAREVA O, MARQUES M, et al.Synthesis and properties of platinum hydride[J].Phys Rev B, 2011, 83(21):214106. doi: 10.1103/PhysRevB.83.214106
    [12] PRATT L R, HSU C S, CHANDLER D.Statistical mechanics of small chain molecules in liquids. Ⅰ. effects of liquid packing on conformational structures[J].J Chem Phys, 1978, 68(9):4202-4213. doi: 10.1063/1.436284
    [13] SILVER S.The normal vibrations of molecules of the tetramethylmethane type[J].J Chem Phys, 1940, 8(12):919-933. doi: 10.1063/1.1750606
    [14] WATARI F.Vibrational spectra of (CD3)4M, and normal coordinate calculations for (CH3)4M and (CD3)4M (M=Si, Ge, Sn, Pb)[J].Spectrochim Acta A, 1978, 34(12):1239-1244. doi: 10.1016/0584-8539(78)80087-7
    [15] RANK D H.The Raman spectrum of tetramethylmethane[J].J Chem Phys, 1933, 1(8):572-575. doi: 10.1063/1.1749330
    [16] EDSALL J T.Raman spectra of amino acids and related substances Ⅲ.ionization and methylation of the amino group[J].J Chem Phys, 1937, 5(4):225-237. doi: 10.1063/1.1750013
    [17] SHELINE R K, PITZER K S.The infra-red spectrum of tetramethyl lead and the force constants of M(CH3)4 type molecules[J].J Chem Phys, 1950, 18(5):595-601. doi: 10.1063/1.1747707
    [18] PERRY S, JONAS J.High pressure Raman study of vibrational relaxation in liquids of group Ⅳ tetramethyl compounds[J].J Chem Phys, 1983, 79(12):6308-6311. doi: 10.1063/1.445738
    [19] MONES A H, POST B.X-ray diffraction study of crystalline neopentane (tetramethyl methane)[J].J Chem Phys, 1952, 20(4):755-756. doi: 10.1063/1.1700547
    [20] VALERGA A J, KILPATRICK J E.Entropy and related thermodynamic properties of tetramethylgermane[J].J Chem Phys, 1970, 52(9):4545-4549. doi: 10.1063/1.1673681
    [21] KREBS B, HENKEL G, DARTMANN M.Structure of tetramethyltin, Sn(CH3)4[J].Acta Cryst C, 1989, 45:1010-1012. doi: 10.1107/S0108270189000090
    [22] QIN Z X, ZHANG J B, TROYAN I, et al.High-pressure study of tetramethylsilane by Raman spectroscopy[J].J Chem Phys, 2012, 136(2):024503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=71977d5b7ef88c956b468178879830b8
    [23] GAJDA R, KATRUSIAK A.The interplay of molecular conformation and crystal packing in pressure-frozen tetramethylsilane[J].Cryst Growth Des, 2008, 8(1):211-214. doi: 10.1021/cg070135h
    [24] SHIMIZU K, MURATA H.Normal vibrations and calculated thermodynamic properties of tetramethylsilane[J].J Mol Spectrosc, 1960, 5:44-51. http://www.sciencedirect.com/science/article/pii/0022285261900649
    [25] ADAMS D M, POGSON M.Vibrational spectroscopy at very high pressures.part 48.a Raman study of the phase behaviour of CH3HgX (X=Cl, Br, I), and the crystal structure of CH3HgBr[J].J Phys C, 1988, 21(6):1065-1079. doi: 10.1088/0022-3719/21/6/013
    [26] RUSH J J, HAMILTON W C.Free rotation of methyl groups in dimethyltin difluoride[J].Inorg Chem, 1966, 5(12):2238-2239. doi: 10.1021/ic50046a037
    [27] ADAMS D M, HAINES J.Phase transitions in the dimethyl thallium (Ⅲ) halides, (CH3)2TlX (X=Cl, Br, I)[J].Spectrochim Acta A, 1993, 49(2):237-248. http://www.sciencedirect.com/science/article/pii/058485399380178D
    [28] LIN Y, MAO W L, DROZD V, et al.Raman spectroscopy study of ammonia borane at high pressure[J].J Chem Phys, 2008, 129(23):234509. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19102540
    [29] DROZDOV A P, EREMETS M I, TROYAN I A.Conventional superconductivity at 190 K at high pressures[EB/OL].[2015-09-10].http://arxiv.org/abs/1412.0460.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  6606
  • HTML全文浏览量:  2591
  • PDF下载量:  234
出版历程
  • 收稿日期:  2015-09-18
  • 修回日期:  2015-11-23

目录

    /

    返回文章
    返回