固体套筒内爆非冲击压缩研究

杨龙 李平 王刚华 阚明先

杨龙, 李平, 王刚华, 阚明先. 固体套筒内爆非冲击压缩研究[J]. 高压物理学报, 2016, 30(4): 344-352. doi: 10.11858/gywlxb.2016.04.012
引用本文: 杨龙, 李平, 王刚华, 阚明先. 固体套筒内爆非冲击压缩研究[J]. 高压物理学报, 2016, 30(4): 344-352. doi: 10.11858/gywlxb.2016.04.012
YANG Long, LI Ping, WANG Gang-Hua, KAN Ming-Xian. Research on the Shockless Compression ofthe Solid Liner Implosion[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 344-352. doi: 10.11858/gywlxb.2016.04.012
Citation: YANG Long, LI Ping, WANG Gang-Hua, KAN Ming-Xian. Research on the Shockless Compression ofthe Solid Liner Implosion[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 344-352. doi: 10.11858/gywlxb.2016.04.012

固体套筒内爆非冲击压缩研究

doi: 10.11858/gywlxb.2016.04.012
详细信息
    作者简介:

    阚明先:杨龙(1988—), 男,硕士,研究实习员,主要从事等离子物理研究.E-mail:540466356@qq.com

  • 中图分类号: O361.3

Research on the Shockless Compression ofthe Solid Liner Implosion

  • 摘要: Z箍缩上的套筒准等熵压缩技术可以用来研究材料的高压状态方程。通过MDSC磁流体力学程序,以铝为负载材料,对PTS shot37负载电流进行非冲击压缩负载设计。结果显示,在原始电流下,没有合适的铝套筒尺寸可以实现非冲击压缩; 对原始电流进行波形调节, 将电流上升时间调为202和303ns后,获得了满足非冲击压缩条件的套筒尺寸范围。当电流上升时间为303ns时,半径为2.5mm,厚度为0.6mm的套筒尺寸在电流最大时刻,保留固相的厚度为0.12mm,此时固相最大压力为63GPa,最大内爆速度为15km/s。

     

  • 图  冲击波转变位置示意图

    Figure  1.  Time versus Lagrangian coordinate x forwave propagating through the initial state

    图  3种上升时间的电流曲线,τr=101ns为原始负载电流,τr=202和303ns为整形后的负载电流波形

    Figure  2.  Three representative load current pulses.The initial load current is τr=101ns, whilethe shaped pulses are τr=202 and 303ns

    图  套筒内层速度和磁场强度随时间的变化

    Figure  3.  Velcocity and magnetic field intensityof liner inner surface versus time

    图  不同时刻套筒的密度剖面图

    Figure  4.  Radial density profilesat 5 different times

    图  不同时刻套筒的压力剖面图

    Figure  5.  Radial pressure profilesat 5 different times

    图  套筒内层速度和磁场强度随时间的变化(d=0.2mm, R=2.0mm)

    Figure  6.  Velcocity and magnetic field intensityof liner inner surface versus timewith d=0.2mm, R=2.0mm

    图  不同时刻套筒的密度剖面

    Figure  7.  Radial density profiles at 5 different times

    图  不同时刻套筒的压力剖面

    Figure  8.  Radial pressure profiles at 5 different times

    图  套筒内层速度及运动路径历史

    Figure  9.  Velocity and trajectory of linerinner surface versus time

    图  10  套筒表面的加载电流和磁压力随时间变化的历史

    Figure  10.  Actual load current and actualmagnetic pressures versus time

    图  11  t=300ns时刻套筒的压力分布图和温度分布图

    Figure  11.  Radial pressure profiles and radial temperature profiles at 300ns

    图  12  铝的熔化线及其与t=300ns时刻套筒剖面的压力-温度关系对比

    Figure  12.  Comparison between the theoretical melting line[17] of Al and the liners radial p-T relation at t=300ns

    图  13  t=303ns时刻套筒的密度、压力、磁场强度剖面以及此刻的相图

    Figure  13.  Liner radial density, pressure and magnetic pressure profiles and the phase diagram at t=303ns

    图  14  t=326ns时刻套筒的密度、压力、磁场强度剖面以及此刻的相图

    Figure  14.  Liner radial density, pressure and magnetic pressure profiles and the phase diagram at t=326ns

    表  1  原始负载电流下的计算结果

    Table  1.   Calculation results with initial load current

    No. d/(mm) R/(mm) τr/(ns) tdiff/(ns) tD/(ns)
    1 0.60 3.0 101 189 100
    2 0.60 2.5 101 169 76
    3 0.50 2.5 101 95 87
    4 0.50 2.8 101 96 89
    5 0.40 3.0 101 119 95
    6 0.40 2.7 101 115 83
    7 0.40 2.5 101 106 79
    8 0.35 2.5 101 93
    9 0.35 2.7 101 97
    10 0.33 3.3 101 99
    11 0.30 2.0 101 80
    12 0.30 2.5 101 86
    13 0.30 3.0 101 92
    14 0.20 2.8 101 96
    15 0.20 2.0 101 54
    下载: 导出CSV

    表  2  电流整形之后的计算结果

    Table  2.   Calculation results with shaped load current

    No. d/(mm) R/(mm) τr/(ns) tdiff/(ns) tD/(ns) tA/(ns)
    1 0.40 2.6 202 175
    2 0.40 2.5 202 162
    3 0.50 2.5 202 201
    4 0.60 2.5 202 245 261
    5 0.70 2.5 202 264 160
    6 0.30 3.0 303 179
    7 0.35 3.0 303 212 341
    8 0.45 3.0 303 247 370
    9 0.48 2.5 303 246 319
    10 0.50 2.5 303 256 320
    11 0.52 2.5 303 285 322
    12 0.54 2.5 303 295 323
    13 0.56 2.5 303 307 324
    14 0.58 2.5 303 300 325
    15 0.60 2.5 303 313 326
    16 0.90 2.5 303 331
    17 0.58 2.8 303 308 362
    18 0.60 2.6 303 323 339
    19 0.60 2.7 303 326 352
    20 0.60 2.8 303 329 365
    21 0.60 2.9 303 331 378
    22 0.60 3.0 303 332 391
    23 0.60 3.1 303 335 404
    24 0.60 3.6 303 366 475
    下载: 导出CSV
  • [1] SAVAGE M, BENNETT L, BLISS D, et al.An overview of pulse compression and power flow in the upgraded Z pulsed power driver[C]//2007 IEEE Pulsed Power Plasma Science Conference.Albuquerque, NM: IEEE, 2007: 979-984. https://www.researchgate.net/publication/224340794_An_Overview_of_Pulse_Compression_and_Power_Flow_in_the_Upgraded_Z_Pulsed_Power_Driver
    [2] MATZEN M K, SWEENEY M A, ADAMS R G, et al.Pulsed-power-driven high energy density physics and inertial confinement fusion research[J].Phys Plasmas, 2005, 12(5):055503. doi: 10.1063/1.1891746
    [3] SINARS D B, SLUTZ S A, HERRMANN M C, et al.Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J].Phys Plasmas, 2011, 18(5):056301. doi: 10.1063/1.3560911
    [4] SLUTZ S A, HERRMANN M C, VESEY R A, et al.Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J].Phys Plasmas, 2010, 17:056303. doi: 10.1063/1.3333505
    [5] SLUTZ S A, VESEY R A.High-gain magnetized inertial fusion[J].Phys Rev Lett, 2012, 108:025003. doi: 10.1103/PhysRevLett.108.025003
    [6] MATZEN M K, ATHERTON B W, CUNEO M E.The refurbished Z facility:capabilities and recent experiments[J].Acta Phys Pol A, 2009, 115(6):956-958. doi: 10.12693/APhysPolA.115.956
    [7] ROSE D V, WELCH D R, MADRID E A, et al.Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator[J].Phys Rev ST Accel Beams, 2010, 13(1):010402. doi: 10.1103/PhysRevSTAB.13.010402
    [8] MCBRIDE R D, MARTIN M R, LEMKE R W, et al.Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J].Phys Plasmas, 2013, 20(5):056309. doi: 10.1063/1.4803079
    [9] 阚明先, 胡熙静, 王刚华.二维磁流体力学ALE数值模拟[J].高能量密度物理, 2009(2):56-60. http://www.cqvip.com/Main/Detail.aspx?id=30778709

    KAN M X, HU X J, WANG G H.Two dimensional MHD ALE numerical simulation[J].High Energy Density Physics, 2009(2):56-60. http://www.cqvip.com/Main/Detail.aspx?id=30778709
    [10] 阚明先, 蒋吉昊, 王刚华.衬套内爆ALE方法二维MHD数值模拟[J].四川大学报(自然科学版), 2007, 44(1):91-96. http://d.old.wanfangdata.com.cn/Periodical/scdxxb200701020

    KAN M X, JIANG J H, WANG G H.ALE simulation of 2D MHD for liner[J].Journal of Sichuan University (Natural Science Edition), 2007, 44(1):91-96. http://d.old.wanfangdata.com.cn/Periodical/scdxxb200701020
    [11] 阚明先, 王刚华, 赵海龙.金属电阻率模型[J].爆炸与冲击, 2013, 33(3):282-286. doi: 10.3969/j.issn.1001-1455.2013.03.010

    KAN M X, WANG G H, ZHAO H L.Electrical resistivity model for metals[J].Explosion and Shock Waves, 2013, 33(3):282-286. doi: 10.3969/j.issn.1001-1455.2013.03.010
    [12] 王刚华, 胡熙静, 孙承纬.双层钨衬套Z箍缩内爆数值模拟[J].高压物理学报, 2004, 18(4):364-367. doi: 10.3969/j.issn.1000-5773.2004.04.013

    WANG G H, HU X J, SUN C W.Simulation of magneto hydrodynamics for plasma jetting on wire pinch[J].Chinese Journal of High Pressure Physics, 2004, 18(4):364-367. doi: 10.3969/j.issn.1000-5773.2004.04.013
    [13] 阚明先, 王刚华, 赵海龙.磁驱动飞片二维磁流体力学数值模拟[J].强激光与电子束, 2013, 25(8):2137-2140. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201308052

    KAN M X, WANG G H, ZHAO H L.Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J].High Power Laser and Particle Beams, 2013, 25(8):2137-2140. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201308052
    [14] 王刚华, 孙承纬, 赵剑衡.磁驱动平面飞片的一维磁流体力学计算[J].爆炸与冲击, 2008, 28(3):261-264. doi: 10.3321/j.issn:1001-1455.2008.03.011

    WANG G H, SUN C W, ZHAO J H.One-dimensional, magneto hydrodynamic simulations of magnetically driven flyer plates[J].Explosion and Shock Waves, 2008, 28(3):261-264. doi: 10.3321/j.issn:1001-1455.2008.03.011
    [15] 孙承纬.磁驱动等熵压缩和高速飞片的实验技术[J].爆轰波与冲击波, 2005, 3(9):125-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502793338

    SUN C W.Research on magnetically driven isentropic compression and high speed flyer plates[J].Detonation and Shock Wave, 2005, 3(9):125-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502793338
    [16] RYUTOV D D, DERZON M S, MATZEN M K.The physics of fast Z pinches[J].Rev Mod Phys, 2000, 72(1):167-223. doi: 10.1103/RevModPhys.72.167
    [17] ALFE D, VOADLO L, PRICE G D, et al.Melting curve of materials:theory versus experimets[J].J Phys Condens Matter, 2004, 16:S973-S982. doi: 10.1088/0953-8984/16/14/006
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  6504
  • HTML全文浏览量:  2497
  • PDF下载量:  54
出版历程
  • 收稿日期:  2014-07-04
  • 修回日期:  2014-09-20

目录

    /

    返回文章
    返回