PBX炸药含各向异性损伤的黏弹性统计微裂纹本构模型初步研究

张延耿 楼建锋 周婷婷 洪滔 张树道

张延耿, 楼建锋, 周婷婷, 洪滔, 张树道. PBX炸药含各向异性损伤的黏弹性统计微裂纹本构模型初步研究[J]. 高压物理学报, 2016, 30(4): 301-310. doi: 10.11858/gywlxb.2016.04.006
引用本文: 张延耿, 楼建锋, 周婷婷, 洪滔, 张树道. PBX炸药含各向异性损伤的黏弹性统计微裂纹本构模型初步研究[J]. 高压物理学报, 2016, 30(4): 301-310. doi: 10.11858/gywlxb.2016.04.006
ZHANG Yan-Geng, LOU Jian-Feng, ZHOU Ting-Ting, HONG Tao, ZHANG Shu-Dao. Initial Study on Constitutive Model of PBXs via Viscoelastic StatisticalCrack Mechanics Including Anisotropic Damage[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 301-310. doi: 10.11858/gywlxb.2016.04.006
Citation: ZHANG Yan-Geng, LOU Jian-Feng, ZHOU Ting-Ting, HONG Tao, ZHANG Shu-Dao. Initial Study on Constitutive Model of PBXs via Viscoelastic StatisticalCrack Mechanics Including Anisotropic Damage[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 301-310. doi: 10.11858/gywlxb.2016.04.006

PBX炸药含各向异性损伤的黏弹性统计微裂纹本构模型初步研究

doi: 10.11858/gywlxb.2016.04.006
基金项目: 

国家自然科学基金 11302031

国家自然科学基金 11372053

国家自然科学基金 11402031

中国工程物理研究院安全弹药研发中心开放基金 RMC2014B02

中国工程物理研究院科学技术发展基金 2014A0201008

中国工程物理研究院科学技术发展基金 2014B0101014

详细信息
    作者简介:

    张延耿 (1981—), 男,博士,助理研究员,主要从事材料冲击动力学理论和数值模拟研究.E-mail: zhang_yangeng@iapcm.ac.cn

    通讯作者:

    楼建锋 (1980—), 男,博士,副研究员,主要从事冲击动力学和爆炸力学的数值模拟研究.E-mail: jflou@iapcm.ac.cn

  • 中图分类号: O346.5

Initial Study on Constitutive Model of PBXs via Viscoelastic StatisticalCrack Mechanics Including Anisotropic Damage

  • 摘要: 建立含损伤本构模型是研究炸药动态力学响应规律的基础。基于PBX炸药材料的宏观黏弹性特征和细观上微裂纹面的方向性,建立了含各向异性损伤的黏弹性统计微裂纹(Aniso-Visco SCRAM)本构模型, 简化后得到单轴应力加载下的本构方程。利用数值计算程序,以PBX9501为例,分析了微裂纹扩展的各向异性、PBX炸药破坏强度及临界应变的拉压异性和应变率相关性,考察了微裂纹数密度、初始微裂纹尺寸、微裂纹面摩擦系数及断裂表面能4个主要参数的敏感性及影响规律。结果表明,它们对微裂纹的扩展演化有较大影响,进而导致材料表现出不同的力学响应。

     

  • 图  Aniso-Visco SCRAM模型示意图(E为弹性模量)

    Figure  1.  Schematic of Aniso-Visco SCRAM(E is the elasticity modulus)

    图  具有不同法向的微裂纹尺寸扩展曲线

    Figure  2.  Calculated crack extension curves of different orientations

    图  Visco SCRAM模型中微裂纹尺寸扩展曲线

    Figure  3.  Calculated crack extensioncurves of Visco SCRAM

    图  单轴拉伸和压缩作用下应力-应变曲线

    Figure  4.  Calculated stress-stain curves under uniaxial tension and compression

    图  不同应变率条件下单轴压缩应力-应变曲线

    Figure  5.  Calculated stress-strain curves under uniaxial compression at different strain rates

    图  不同应变率条件下单轴拉伸应力-应变曲线

    Figure  6.  Calculated stress-strain curves under uniaxial tension at different strain rates

    图  不同微裂纹数密度取值的计算结果

    Figure  7.  Calculated results under uniaxialcompression with different number densities

    图  不同初始裂纹尺寸的计算结果

    Figure  8.  Calculated results under uniaxialcompression with different initial crack sizes

    图  不同微裂纹面摩擦系数的计算结果

    Figure  9.  Calculated results under uniaxial compressionwith different frictional coefficients

    图  10  不同断裂表面能的计算结果

    Figure  10.  Calculated results under uniaxialcompression with different surface energies

    表  1  Aniso-Visco SCRAM模型输入参数

    Table  1.   Constitutive model parameters for Aniso-Visco SCRAM

    Density/(g/cm3) G/(GPa) μ ν c0/(μm) cR/(m/s) N0/(cm-3) m γ/(J/m2)
    1.86 3.235 0.5 0.3 30 300 45* 10 0.5*
    G(1)/(GPa) G(2)/(GPa) G(3)/(GPa) G(4)/(GPa) G(5)/(GPa)
    0.9440 0.1738 0.5212 0.9085 0.6875
    [1/τ(1)]/(μs-1) [1/τ(2)]/(μs-1) [1/τ(3)]/(μs-1) [1/τ(4)]/(μs-1) [1/τ(5)]/(μs-1)
    0 0.00732 0.0732 0.732 2.0
    Note:(1)c0 is the initial crack size;(2)Values with subscript “*” are dedicated to this study.
    下载: 导出CSV
  • [1] DIENES J K.A statistical theory of fragmentation[C]//Proceedings of the 19th US Symposium on Rock Mechanics.Reno, Nevada: University of Nevada, 1978: 51-55.
    [2] DIENES J K, ZUO Q H, KERSHNER J D.Impact initiation of explosives and propellants via statistical crack mechanics[J].J Mech Phys Solids, 2006, 54(6):1237-1275. doi: 10.1016/j.jmps.2005.12.001
    [3] BENNETT J G, HABERMAN K S, JOHNSON J N, et al.A constitutive model for the non-shock ignition and mechanical response of high explosives[J].J Mech Phys Solids, 1998, 46(12):2303-2322. doi: 10.1016/S0022-5096(98)00011-8
    [4] HACKETT R M, BENNETT J G.An implicit finite element material model for energetic particulate composite materials[J].Int J Numer Meth Eng, 2000, 49(9):1191-1209. doi: 10.1002/(ISSN)1097-0207
    [5] ADDESSIO F L, JOHNSON J N.A constitutive model for the dynamic response of brittle materials[J].J Appl Phys, 1990, 67(7):3275-3286. doi: 10.1063/1.346090
    [6] ZUO Q H, ADDESSIO F L, DIENES J K, et al.A rate-dependent damage model for brittle materials based on the dominant crack[J].Int J Solids Struc, 2006, 43(11):3350-3380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f12afa557e18fa52561b3a04cec743f0
    [7] 王礼立.应力波基础[M].北京:国防工业出版社, 2005:148-151.

    WANG L L.Foundation of stress waves[M].Beijing:National Defense Industry Press, 2005:148-151.
    [8] 叶敬棠, 柳兆荣, 许世雄, 等.流体力学[M].上海:复旦大学出版社, 1989:375-379.

    YE J T, LIU Z R, XE S X, et al.Fluid mechnics[M].Shanghai:Fudan University Press, 1989:375-379.
    [9] SEAMAN L, CURRAN D R, SHOCKEY D A.Computational models for ductile and brittle fracture[J].J Appl Phys, 1976, 47(11):4811-4826. doi: 10.1063/1.322523
    [10] EVANS A G.Slow crack growth in brittle materials under dynamic loading conditions[J].Int J Fract, 1974, 10(2):251-259. doi: 10.1007/BF00113930
    [11] FREUND L B.Dynamic fracture mechanics[M].Cambridge:Cambridge University Press, 1993.
    [12] RICE J R.Comments on "on the stablility of shear cracks and the calculation of compressive strength" [J].J Geophys Res, 1984, 89(B4):2505-2507. doi: 10.1029/JB089iB04p02505
    [13] KEER L M.A note on shear and combined loading for penny-shaped crack[J].J Mech Phys Solids, 1966, 14(1):1-6. doi: 10.1016/0022-5096(66)90014-7
    [14] 陈鹏万, 黄风雷.含能材料损伤理论及应用[M].北京:北京理工大学出版社, 2006:25-30.

    CHEN P W, HUANG F L.Damage theories and applications of energetic materials[M].Beijing:Beijing Institute of Technology Press, 2006:25-30.
    [15] GRAY G T Ⅲ, IDAR D J, BLUMENTHAL W R, et al.High-and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature[C]//The 11th International Detonation Symposium.Snowmass, Colorado: Los Alamos National Lab, 1998: 76-84.
    [16] 赵玉刚, 傅华, 李俊玲, 等.三种PBX炸药的动态拉伸力学性能[J].含能材料, 2011, 19(2):194-199. doi: 10.3969/j.issn.1006-9941.2011.02.016

    ZHAO Y G, FU H, LI J L, et al.Dynamic tensile mechanical properties of three types of PBX[J].Chinese Journal of Energetic Materials, 2011, 19(2):194-199. doi: 10.3969/j.issn.1006-9941.2011.02.016
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  6891
  • HTML全文浏览量:  2959
  • PDF下载量:  119
出版历程
  • 收稿日期:  2015-01-09
  • 修回日期:  2015-11-30

目录

    /

    返回文章
    返回