基于任意Riemann解法器的相容中心型ALE方法

刘妍 田保林 申卫东 茅德康

刘妍, 田保林, 申卫东, 茅德康. 基于任意Riemann解法器的相容中心型ALE方法[J]. 高压物理学报, 2015, 29(6): 425-435. doi: 10.11858/gywlxb.2015.06.004
引用本文: 刘妍, 田保林, 申卫东, 茅德康. 基于任意Riemann解法器的相容中心型ALE方法[J]. 高压物理学报, 2015, 29(6): 425-435. doi: 10.11858/gywlxb.2015.06.004
LIU Yan, TIAN Bao-Lin, SHEN Wei-Dong, MAO De-Kang. A Compatible Cell-Centered ALE Method Based on General Riemann Solver[J]. Chinese Journal of High Pressure Physics, 2015, 29(6): 425-435. doi: 10.11858/gywlxb.2015.06.004
Citation: LIU Yan, TIAN Bao-Lin, SHEN Wei-Dong, MAO De-Kang. A Compatible Cell-Centered ALE Method Based on General Riemann Solver[J]. Chinese Journal of High Pressure Physics, 2015, 29(6): 425-435. doi: 10.11858/gywlxb.2015.06.004

基于任意Riemann解法器的相容中心型ALE方法

doi: 10.11858/gywlxb.2015.06.004
基金项目: 国家自然科学基金(11572052, 1472059, 11301328,11171037);中国工程物理研究院计算物理重点实验室基础研究课题
详细信息
    作者简介:

    刘妍(1974—), 女, 博士, 副研究员, 主要从事计算流体力学数值方法研究.E-mail:yan_liu_zh@163.com

  • 中图分类号: O241

A Compatible Cell-Centered ALE Method Based on General Riemann Solver

  • 摘要: 深入分析了精确Riemann解法器、MFCAV(Multi Fluid Channel on Averaged Volume)和Dukowicz近似Riemann解法器不能直接应用于相容拉氏方法的原因,通过引入更一般形式的角点算子, 成功将以上3种Riemann解法器应用于新相容拉氏方法中;进一步结合高效的网格重分、重映技术,建立了一种基于任意Riemann解法器的相容中心型显式两步任意拉格朗日-欧拉(ALE)方法。将新的ALE方法应用于数值算例中,结果表明,新ALE方法不仅具有新相容拉氏方法的优点,而且具有处理大变形流动问题的能力。

     

  • 图  网格和网格角点周围的两套符号系统

    Figure  1.  Notations relate cell Ωi and nodal at point Mq

    图  Riemann分解的波系结构

    Figure  2.  Wave structure of Riemann solver

    图  Sod激波管问题在0.2时刻的计算结果

    Figure  3.  Results of Sod problem at t=0.2

    图  Noh问题在0.6时刻的计算结果

    Figure  4.  Results of Noh problem at t=0.6

    图  Sedov问题在1.0时刻的计算结果

    Figure  5.  Results of Sedov problem at t=1.0

    图  Saltzmann问题在0.7时刻的计算结果

    Figure  6.  Results of Saltzmann problem at t=0.7

    图  Dukowicz问题的初始状态

    Figure  7.  Initial states of Dukowicz problem

    图  Dukowicz问题在1.3时刻的密度分布计算结果

    Figure  8.  Density distribution of Dukowicz problem at t=1.3

    图  Taylor Green Vortex算例在0.75时刻的速度等值线

    Figure  9.  Velocity contours of Taylor Green Vortex problem at t=0.75

    图  10  Taylor Green Vortex算例在xy方向的熵

    Figure  10.  Entropy of Taylor Green Vortex problem in x and y direction

    图  11  二维Riemann问题在0.52时刻的计算结果

    Figure  11.  Contours of two-dimensional Riemann problem at t=0.52

    图  12  双Mach反射问题在0.60时刻的计算结果

    Figure  12.  Contours of double Mach reflection problem at t=0.60

    表  1  Taylor Green Vortex算例在0.75时刻的误差分析

    Table  1.   Error analysis of the 3 Riemann solvers for Taylor Green Vortex problem at t=0.75

    Grid
    number
    Exact MFCAV Dukowicz
    L1 error
    Convergence
    rate
    L1 error
    Convergence
    rate
    L1 error Convergence
    rate
    40 0.357 465 380 0.214 033 305 0.357 462 330
    80 0.211 823 462 0.754 7 0.116 933 955 0.872 1 0.211 822 688 0.754 9
    160 0.115 855 157 0.870 6 0.061 305 690 0.931 6 0.115 854 999 0.870 5
    320 0.060 805 808 0.929 5 0.031 570 952 0.957 4 0.060 805 780 0.930 0
    下载: 导出CSV
  • [1] Loubere R, Shashkov M J. A subcell remapping method on staggered polygonal grids for arbitrary Lagrangian-Eulerian method[J]. J Comput Phys, 2005, 209(1): 105-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yysxhlx-e201910009
    [2] Duckowicz J K, Meltz B J A. Vorticity errors in multidimensional Lagrangian codes[J]. J Comput Phys, 1992, 99(1): 115-134. doi: 10.1007/3-540-54960-9_62
    [3] Addession F L, Carroll D E, Dukowicz J K, et, al. CAVEAT: A computer code for fluid dynamics problem with large distortion and internal slip, LA-10613-MS[R]. New Mexico: Los Alamos National Lab, 1992.
    [4] 田保林, 申卫东, 刘妍, 等. ALE框架下几种不同Godunov型格式的数值比较[J].计算物理, 2007, 24(5): 537-542. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl200705006

    Tian B L, Shen W D, Liu Y, et al. Numerical comparing of several Godunov type schemes in Lagrangian framework[J]. Chinese Journal of Computational Physics, 2007, 24(5): 537-542. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl200705006
    [5] Maire P H, Abgrall R, Breil J, et al. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[J]. SIAM J Sci Comput, 2007, 29(4): 1781-1824. doi: 10.1137/050633019
    [6] Maire P H. A high order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes[J]. J Comput Phys, 2009, 228(7): 2391-2425. doi: 10.1016/j.jcp.2008.12.007
    [7] Liu Y, Tian B L, Shen W D, et al. Application of MFCAV Riemann solver to Maire's cell-centered Lagrangian method[J]. J Comput Math, 2015, 37(3): 286-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jssx-e201502002
    [8] 李德元, 徐国荣, 水鸿寿, 等.二维非定常流体力学数值方法[M].北京: 科学出版社, 1987.

    Li D Y, Xu G R, Shui H S, et al. Two-Dimensional Hydrodynamic Numerical Algorithm[M]. Beijing: Science Press, 1987. (in Chinese)
    [9] Winslow A M. Adaptive mesh zoning by the equipotential method, UCID-9062[R]. California: Lawrence Livermore National Laboratory, 1981.
    [10] Benson D J. Momentum advection on a staggered mesh[J]. J Comput Phys, 1992, 100(1): 143-162. http://www.sciencedirect.com/science/article/pii/002199919290299E
    [11] Noh W F. Errors for calculations of strong shocks using artifical viscosity and artifical heat flux[J]. J Comput Phys, 1987, 72(1): 78-120. http://www.sciencedirect.com/science/article/pii/002199918790074X
    [12] Tian B L, Shen W D, Jiang S, et al. An arbitrary Lagrangian-Eulerian method based on the apaptive Riemann solver for general equations of state[J]. Int J Numer Meth Fluids, 2009, 59(11): 1217-1240. doi: 10.1002/fld.1871
    [13] Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. J Comput Phys, 1984, 54(1): 115-173. http://www.ams.org/mathscinet-getitem?mr=748569
    [14] 刘妍, 田保林, 申卫东, 等. MFCAV近似Riemann解法器在相容拉氏方法中的熵条件分析[J].计算数学学报, 2015, 33(2): 1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jssx201503006

    Liu Y, Tian B L, Shen W D, et al. The analysis of entropy condition for MFCAV Riemann solver in a compatible Lagrangian method[J]. Journal of Computational Mathematics, 2015, 33(2): 1-18. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jssx201503006
    [15] Brio M, Zakharian A R, Webb G M. Two-dimensional Riemann solver for Euler equations of gas dynamics[J]. J Comput Phys, 2001, 167(1): 177-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6eg32jCmOcxOiUravPVT3BNlMlk7aK5ixuQJy9lQSmE=
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  6358
  • HTML全文浏览量:  1942
  • PDF下载量:  76
出版历程
  • 收稿日期:  2015-04-17

目录

    /

    返回文章
    返回