Numerical Investigation on Penetration Performance of Segmented Rods

HU Jing DENG Yun-Fei MENG Fan-Zhu JIANG Ying

胡静, 邓云飞, 孟凡柱, 姜颖. 分段杆弹侵彻效率的数值模拟[J]. 高压物理学报, 2015, 29(6): 410-418. doi: 10.11858/gywlxb.2015.06.002
引用本文: 胡静, 邓云飞, 孟凡柱, 姜颖. 分段杆弹侵彻效率的数值模拟[J]. 高压物理学报, 2015, 29(6): 410-418. doi: 10.11858/gywlxb.2015.06.002
HU Jing, DENG Yun-Fei, MENG Fan-Zhu, JIANG Ying. Numerical Investigation on Penetration Performance of Segmented Rods[J]. Chinese Journal of High Pressure Physics, 2015, 29(6): 410-418. doi: 10.11858/gywlxb.2015.06.002
Citation: HU Jing, DENG Yun-Fei, MENG Fan-Zhu, JIANG Ying. Numerical Investigation on Penetration Performance of Segmented Rods[J]. Chinese Journal of High Pressure Physics, 2015, 29(6): 410-418. doi: 10.11858/gywlxb.2015.06.002

Numerical Investigation on Penetration Performance of Segmented Rods

doi: 10.11858/gywlxb.2015.06.002
More Information
    Author Bio:

    HU Jing(1972—), female, master, associate professor, major in aircraft repair and structural mechanics. E-mail:jhu@cauc.edu.cn

    Corresponding author: DENG Yun-Fei(1982—), male, doctor, lecturer, major in impact dynamics and structural mechanics.E-mail: dengyunfeihit@gmail.com
  • 摘要: 为研究分段杆弹的侵彻效率, 对不同结构的钨合金分段及连续杆弹侵彻半无限厚4340钢靶进行了数值模拟, 撞击速度范围为1 500~3 500 m/s。数值模拟的侵彻深度及弹坑形状与冲击实验一致, 验证了数值模拟的有效性。基于AUTODYN软件的数值模拟结果表明, 在一定条件下, 分段杆弹的侵彻效率高于连续杆弹, 这是因为分段杆弹的侵彻效率取决于s/d(分弹体的间隔与直径之比)和撞击速度。分段杆弹的最佳s/d由弹体结构和撞击速度决定。计算结果揭示了分段、连续杆弹以及分段杆弹高速、低速侵彻靶体得到的弹坑的差异。

     

  • Figure  1.  Schematic configuration of projectiles

    Figure  2.  Comparison of results between calculations and experiments by Holland[2]

    Figure  3.  Comparisons of normalized penetration efficiency Pm between ISG and ALTSG

    Figure  4.  Penetration process of ALTNSG

    Figure  5.  Comparisons of normalized penetration efficiency Pm between TARSG and ALTSG

    Figure  6.  Comparisons of normalized penetration efficiency Pm between ALTSG and ALTNSG

    Figure  7.  Penetration process of ALTNSG

    Figure  8.  Cater profiles of ISG

    Figure  9.  Cater profiles of TARSG

    Table  1.   Parameters of the projectiles


    Projectile
    type
    s/d L/
    (mm)
    ms/
    (g)
    ξm Projectile
    type
    s/d L/
    (mm)
    ms/
    (g)
    ξm
    ISG 1 49.85 11.35 1 ALTSG 1 49.86 14.14 1.25
    ISG 2 72.02 11.35 1 ALTSG 2 72.02 15.39 1.36
    ISG 3 94.18 11.35 1 ALTSG 3 94.18 16.63 1.46
    ISG 4 116.34 11.35 1 ALTSG 4 116.34 17.87 1.57
    ISG 5 138.50 11.35 1 ALTSG 5 138.50 19.11 1.68
    TARSG 1 49.86 12.20 1.08 ALTNSG 1 49.86 14.75 1.29
    TARSG 2 72.02 13.06 1.15 ALTNSG 2 72.02 16.60 1.46
    TARSG 3 94.18 13.91 1.23 ALTNSG 3 94.18 18.45 1.63
    TARSG 4 116.34 14.77 1.30 ALTNSG 4 116.34 20.30 1.79
    TARSG 5 138.50 15.62 1.38 ALTNSG 5 138.50 22.15 1.95
    CLD 0 27.70 11.35 1
    下载: 导出CSV

    Table  2.   Material constants of the projectiles and targets

    Material Density/
    (g/cm3)
    Tensile
    limit/(GPa)
    Bulk modulus/
    (GPa)
    Shear
    modulus/(GPa)
    Yield stress/
    (GPa)
    W-10 tungsten 17.0 -2 311.3 160.514 0.646 7
    4340 steel 7.84 -2.5 183 75.864 1.0
    Material Density/
    (g/cm3)
    Tensile
    limit/(GPa)
    Shear modulus/
    (GPa)
    Yield
    stress/(GPa)
    Grüneisen
    coef.
    C1/
    (km/s)
    S1
    Nylon 1.14 -0.999 999 9 3.68 0.05 0.87 2.29 1.63
    Material Density/
    (g/cm3)
    Tensile
    limit/(GPa)
    Shear modulus/
    (GPa)
    Yield
    stress/(GPa)
    A1/
    (GPa)
    A2/
    (GPa)
    A3/
    (GPa)
    Al6061-T6 2.704 -0.999 999 9 27.5 0.27 77.389 99 105.99 153.78
    Material Grüneisen
    coef.
    Expansion
    coef.
    Sublimation
    Energy/(MJ/kg)
    Reference
    temperature/(T)
    Specific heat/
    (J/(kg·K))
    Al6061-T6 2.0 0.67 3.14 300 884.999 939
    Note: (1) C1, S1 are coefficients of the shock velocity-particle velocity curve;
              (2) A1, A2 and A3 are the parameters of puff equation of state.
    下载: 导出CSV
  • [1] Charters A C. The penetration of rolled homogeneous armor by continuous and segmented rods at high velocity: Theory and experiments, CR-86-1031[R]. USA: General Research Corporation, 1986.
    [2] Holland P M, Gordon J T, Menna T L, et al. Hydrocode results for the penetration of continuous, segmented and hybrid rods compared with experiments[J]. Int J Impact Engng, 1990, 10: 241-250. doi: 10.1016/0734-743X(90)90062-Z
    [3] Charters A C, Menna T L, Piekutowski A J. Penetration dynamics of rods from direct ballistic tests of advance armor components at 2-3 km/s[J]. Int J Impact Engng, 1990, 10: 93-106. doi: 10.1016/0734-743X(90)90051-V
    [4] Tate A. Engineering modelling of some aspects of segmented rod penetration[J]. Int J Impact Engng, 1990, 9: 327-341. doi: 10.1016/0734-743X(90)90006-H
    [5] Scheffier D R, Zukas J A. Numerical simulation of segmented penetrator impact[J]. Int J Impact Engng, 1990, 10: 487-497. doi: 10.1016/0734-743X(90)90082-7
    [6] Lee M. A numerical comparison of the ballistic peneformance of unitary rod and segmented rods against stationary and moving oblique plates[J]. Int J Impact Engng, 2001, 26: 399-407. doi: 10.1016/S0734-743X(01)00090-2
    [7] Littlefield D L. Effect of aligenment on penetration of segmented rods[J]. Int J Impact Engng, 2001, 26: 421-431. doi: 10.1016/S0734-743X(01)00092-6
    [8] Orphal D L, Franzen R R. Penetration mechanics and performance of segmented rods against metal targets[J]. Int J Impact Engng, 1990, 10: 427-438. doi: 10.1016/0734-743X(90)90077-9
    [9] Anderson C E. Penetration mechanics of seg-tel penetrators[J]. Int J Impact Engng, 1997, 20: 13-26. doi: 10.1016/S0734-743X(97)87477-5
    [10] Naz P, Lehr H F. The crater formation due to segmented rod penentrators[J]. Int J Impact Engng, 1990, 10: 413-425. doi: 10.1016/0734-743X(90)90076-8
    [11] Century Dynamics Inc. AUTODYN Theory Manual Revision 4.3[M]. USA: Century Dynamics Inc, 2005.
    [12] Rohr I, Nahme H, Thoma K, et al. Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates[J]. Int J Impact Engng, 2008, 35: 811-819. doi: 10.1016/j.ijimpeng.2007.12.006
    [13] Wang X M, Zhao G Z, Shen P H, et al. High velocity impact of segmented rods with an aluminum carrier tube[J]. Int J Impact Engng, 1995, 17: 915-923. doi: 10.1016/0734-743X(95)99910-J
    [14] Aly S Y, Li Q M. Numerical investigation of penetration performance of non-ideal segmented-rod projectiles[J]. Trans Tianjin Univ, 2008, 14: 391-395. doi: 10.1007/s12209-008-0067-x
    [15] 邓云飞, 张伟, 曹宗胜, 等.分段弹侵彻效率的数值模拟研究[J].高压物理学报, 2011, 25(3): 251-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201103011

    Deng Y F, Zhang W, Cao Z S. Numerical investigation of penetration performance of segmented rods penetration into steel target[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 251-261. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201103011
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  6383
  • HTML全文浏览量:  2170
  • PDF下载量:  58
出版历程

目录

    /

    返回文章
    返回