Theoretical Study on the Reaction of Chlorine Trifluoride Oxidewith Propylene Oxide by Density Functional Theory

YAN Hua LIU Zhi-Yong SHI Mao-Sheng LUO Yong-Feng YAN Peng GONG Xue-Dong

闫华, 刘志勇, 史茂盛, 罗永锋, 颜澎, 贡雪东. ClF3O和环氧丙烷反应的理论研究[J]. 高压物理学报, 2015, 29(3): 232-240. doi: 10.11858/gywlxb.2015.03.011
引用本文: 闫华, 刘志勇, 史茂盛, 罗永锋, 颜澎, 贡雪东. ClF3O和环氧丙烷反应的理论研究[J]. 高压物理学报, 2015, 29(3): 232-240. doi: 10.11858/gywlxb.2015.03.011
YAN Hua, LIU Zhi-Yong, SHI Mao-Sheng, LUO Yong-Feng, YAN Peng, GONG Xue-Dong. Theoretical Study on the Reaction of Chlorine Trifluoride Oxidewith Propylene Oxide by Density Functional Theory[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 232-240. doi: 10.11858/gywlxb.2015.03.011
Citation: YAN Hua, LIU Zhi-Yong, SHI Mao-Sheng, LUO Yong-Feng, YAN Peng, GONG Xue-Dong. Theoretical Study on the Reaction of Chlorine Trifluoride Oxidewith Propylene Oxide by Density Functional Theory[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 232-240. doi: 10.11858/gywlxb.2015.03.011

Theoretical Study on the Reaction of Chlorine Trifluoride Oxidewith Propylene Oxide by Density Functional Theory

doi: 10.11858/gywlxb.2015.03.011
More Information
    Author Bio:

    YAN Hua(1974 —), female, doctor, major in explosive mechanics and the reaction dynamics.E-mail:hlary@163.com

  • 摘要: 应用密度泛函理论对ClF3O和环氧丙烷的反应机理进行了研究。在B3PW91/6-31++G(d, p)水平上优化了各驻点(反应物、中间体、过渡态和产物)的几何构型,并计算了它们的振动频率和零点振动能。采用CCSD(T)/6-31++G(d, p)//B3PW91/6-3l++G(d, p)单点能计算方法求得各物质的能量,并做零点能校正。计算结果表明,ClF3O与C3H6O可经过不同的反应路径,引发C3H5O自由基和ClOF2自由基生成环氧丙醇和三氟化氯, 其中, 位于ClF3O周向位置的F原子与C3H6O的C(7)上与CH3异侧的H(9)原子结合的活化能最低, 仅15.63 kJ/mo1;ClF3O与C3H6O反应生成的C3H5O自由基和ClOF2自由基继续反应,经过不同反应路径生成C3H4O、ClOF和HF, 其中, ClOF2中的F原子和C3H5O中的H(2)或H(4)原子结合是无能垒的过程。整个反应的主要路径为C3H6O+ClF3O→TS12→P4 (C3H5O+HF+ClOF2)→P12 (CH2CHCHO+2HF+ClOF)。

     

  • Figure  1.  B3PW91/6-31G++(d, p) optimized geometriesof reactants (Bond distances are in nm)

    Figure  2.  B3PW91/6-31G++(d, p) optimized geometries of TS1-TS18 (Bond distances are in nm)

    Figure  3.  B3PW91/6-31G++(d, p) optimized geometries of products for the initial reaction ofClF3O with C3H6O (Bond distances are in nm)

    Figure  4.  Schematic pathways for the reaction of ClF3O with C3H6O at the B3PW91/6-31++G(d, p) level

    Figure  5.  Geometries of the intermediates, transition states and products for the reaction of C3H5O with ClOF2optimized at B3PW91/6-31G++(d, p) level (Bond distances are in nm)

    Figure  6.  Schematic pathways (path 19-path 23)of ClOF2 reacting with C3H5O at theB3PW91/6-31++G(d, p) level

    Table  1.   Calculated Mulliken atomic charges of ClF3O and C3H6

    Species Muliken atomic charges
    ClF3O Cl O(5) F(2) F(3) F(4)
    1.498 e -0.377 e -0.412 e -0.297 e -0.412 e
    C3H6O C(1) C(5) C(7) O(10) H(2) H(3) H(4) H(6) H(8) H(9)
    -0.589 e 0.154 e -0.195 e -0.312 e 0.176 e 0.166 e 0.144 e 0.172 e 0.145 e 0.139 e
    下载: 导出CSV

    Table  2.   Theoretically predicted total energies and ZPVE of the reactants, products, intermediates andtransition states of the initial reaction of ClF3O with C3H6

    Species Theoretically predicted total energy/(Eh) ZPVE/(Eh)
    B3PW91/6-31++G(d, p) CCSD(T)/6-31++G(d, p)
    R -1 027.394 86 -1 025.794 45 0.096 70
    HF -100.405 44 -100.221 69 0.009 37
    ClF3 -759.334 92 -758.257 61 0.006 83
    ClOF2 -734.690 69 -733.648 15 0.006 85
    m1 -192.314 18 -191.929 13 0.071 08
    m2 -192.311 31 -191.926 34 0.072 49
    m3 -192.308 17 -191.924 18 0.072 32
    m4 -192.308 07 -191.923 93 0.072 33
    m5 -192.317 63 -191.933 14 0.070 34
    m6 -268.114 73 -267.606 26 0.090 87
    m7 -268.150 09 -267.634 78 0.091 28
    m8 -268.146 94 -267.631 29 0.090 92
    m9 -268.167 10 -267.650 67 0.089 91
    m10 -268.164 82 -267.647 49 0.090 32
    m11 -268.165 91 -267.648 25 0.090 24
    TS1 -1 027.342 31 -1 025.753 62 0.088 97
    TS2 -1 027.342 95 -1 025.751 83 0.088 74
    TS3 -1 027.342 98 -1 025.750 91 0.088 69
    TS4 -1 027.350 54 -1 025.749 54 0.089 33
    TS5 -1 027.346 43 -1 025.747 74 0.089 01
    TS6 -1 027.346 48 -1 025.753 75 0.088 93
    TS7 -1 027.375 16 -1 025.778 08 0.089 66
    TS8 -1 027.375 98 -1 025.772 56 0.089 69
    TS9 -1 027.375 88 -1 025.772 91 0.089 62
    TS10 -1 027.384 15 -1 025.776 72 0.090 79
    TS11 -1 027.380 53 -1 025.780 98 0.089 91
    TS12 -1 027.380 94 -1 025.781 61 0.089 82
    TS13 -1 027.350 89 -1 025.737 00 0.090 18
    TS14 -1 027.352 74 -1 025.741 21 0.090 20
    TS15 -1 027.352 66 -1 025.741 63 0.090 09
    TS16 -1 027.363 19 -1 025.752 76 0.091 12
    TS17 -1 027.357 43 -1 025.744 04 0.090 47
    TS18 -1 027.358 81 -1 025.747 13 0.090 53
    P1 -1 027.410 31 -1 025.798 97 0.087 30
    P2 -1 027.407 44 -1 025.796 18 0.088 71
    P3 -1 027.404 31 -1 025.794 02 0.088 54
    P4 -1 027.404 20 -1 025.793 77 0.088 55
    P5 -1 027.413 76 -1 025.802 98 0.086 56
    P6 -1 027.482 23 -1 025.863 87 0.097 70
    P7 -1 027.485 01 -1 025.892 38 0.098 11
    P8 -1 027.481 86 -1 025.888 89 0.097 75
    P9 -1 027.502 02 -1 025.908 28 0.096 74
    P10 -1 027.499 74 -1 025.905 10 0.097 15
    P11 -1 027.500 83 -1 025.905 85 0.097 07
      *R refers to the reactants, i.e., ClF3O+C3H6O.
    下载: 导出CSV

    Table  3.   Theoretically predicted energy barriers (Ea) and reaction enthalpies (ΔH)for various pathways of ClFO3 reacting with C3H6

    Path Reactionposition Transitionstates Product Ea/(kJ/mol) ΔH/(kJ/mol)
    1 F(2)-H(2) TS1 P1 86.88 -36.55
    2 F(2)-H(3) TS2 P1 90.99 -36.55
    3 F(2)-H(4) TS3 P1 93.28 -36.55
    4 F(2)-H(6) TS4 P2 98.55 -25.54
    5 F(2)-H(8) TS5 P3 102.41 -20.31
    6 F(2)-H(9) TS6 P4 86.44 -19.63
    7 F(3)-H(2) TS7 P1 24.47 -36.55
    8 F(3)-H(3) TS8 P1 39.07 -36.55
    9 F(3)-H(4) TS9 P5 37.93 -49.05
    10 F(3)-H(6) TS10 P2 31.02 -25.54
    11 F(3)-H(8) TS11 P3 17.53 -20.31
    12 F(3)-H(9) TS12 P4 15.63 -19.63
    13 O-H(2) TS13 P6 133.70 -179.65
    14 O-H(3) TS14 P7 122.71 -253.43
    15 O-H(4) TS15 P8 121.32 -245.22
    16 O-H(6) TS16 P9 94.77 -298.77
    17 O-H(8) TS17 P10 115.98 -289.34
    18 O-H(9) TS18 P11 108.02 -291.53
    下载: 导出CSV

    Table  4.   Theoretical predicted total energies and ZPVE of the intermediates, transition states andproducts for the reaction of ClOF2 with C3H5

    Species Theoretical predicted total energy/(Eh) ZPVE/(Eh)
    B3PW91/6-31++G(d, p) CCSD(T)/6-31++G(d, p)
    M1 -927.136 18 -925.730 57 0.083 21
    IM2 -927.158 76 -925.759 06 0.082 38
    IM3 -927.074 46 -925.669 47 0.078 47
    TS19 -927.080 68 -925.672 53 0.080 66
    TS20 -927.049 69 -925.631 00 0.073 00
    TS21 -927.068 35 -925.653 06 0.077 01
    ClOF -634.947 28 -634.100 93 0.024 43
    CH2CHCHO -191.784 92 -191.406 14 0.061 46
    a-CH3CHCO -191.789 66 -191.403 24 0.061 10
    b-CH3CHCO -191.700 30 -191.320 40 0.060 60
    P12 -927.137 64 -925.728 76 0.075 26
    P13 -927.142 38 -925.725 86 0.074 90
    P14 -927.053 02 -925.643 02 0.074 40
    下载: 导出CSV

    Table  5.   Theoretical predicted energy barriers (Ea) andreaction enthalpies (ΔH) for various pathways of ClOF2 reacting with C3H5

    Path Reaction position Transition states Product Ea/(kJ/mol) ΔH/(kJ/mol)
    19 F(11)-H(2) - P12 - -374.92
    20 F(11)-H(3) TS19 P12 139.02 -374.92
    21 F(11)-H(4) - P12 - -374.92
    22 F(11)-H(6) TS20 P13 261.73 -388.31
    23 F(11)-H(8) TS21 P14 12.21 -155.01
    下载: 导出CSV
  • [1] Bauer H F, Pilipovich D, Wilson R D.Oxychlorine trifluoride and alkali fluoride-Cl2O complex: US, 3733392[P].1972.
    [2] Pilipovich D, Lindahl C B, Schack C J, et al.Chlorine trifluoride oxide.Ⅰ.Preparation and properties[J].Inorg Chem, 1972, 11(9):2189-2192. doi: 10.1021/ic50115a040
    [3] Pilipovich D, Rogers H H, Wilson R D.Chlorine trifluoride oxide.Ⅱ.Photochemical synthesis[J].Inorg Chem, 1972, 11(9):2192-2195. doi: 10.1021/ic50115a041
    [4] Christe K O, Curtis E C.Chlorine trifluoride oxide.Ⅲ.Vibrational spectrum, force constants, and thermodynamic properties[J].Inorg Chem, 1972, 11(9):2196-2201. doi: 10.1021/ic50115a042
    [5] Schack C J, Lindahl C B, Pilipovich D, et al.Chlorine trifluoride oxide.Ⅵ.Reaction chemistry[J].Inorg Chem, 1972, 11(9):2201-2205. doi: 10.1021/ic50115a043
    [6] Christe K O, Schack C J, Pilipovich D.Chlorine trifluoride oxide.Ⅴ.Complex formation with lewis acids and bases[J].Inorg Chem, 1972, 11(9):2205-2208. doi: 10.1021/ic50115a044
    [7] Christe K O, Curtis E C.Chlorine trifluoride oxide.Ⅵ.Tetrafluorooxychlorate (V) anion, ClF4O- vibrational spectra and force constants[J].Inorg Chem, 1972, 11(9):2209-2211. doi: 10.1021/ic50115a045
    [8] Christe K O, Curtis E C, Schack C J.Chlorine trifluoride oxide.Ⅶ.Difluorooxychloronium (V) cation, ClF2O+ vibrational spectrum and force constants[J].Inorg Chem, 1972, 11(9):2212-2215. doi: 10.1021/ic50115a046
    [9] Oberhammer H, Christe K O.Gas-phase structure of chlorine trifluoride oxide ClF3O[J].Inorg Chem, 1982, 21:273-275. doi: 10.1021/ic00131a050
    [10] 钟亮.丙烯部分氧化合成环氧丙烷表面反应规律的研究[D].天津: 天津大学, 2004.

    Zhong L.Study on the surface reaction behaviors of propylene partial oxidation to propylene oxide[D].Tianjin: Tianjin University, 2004.(in Chinese)
    [11] 胡栋, 袁长迎, 李萍, 等.环氧丙烷点火的光谱研究.高压物理学报[J], 2003, 17(3):70-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb200303002

    Hu D, Yuan C Y, Li P, et al.Spectroscopic studies of epoxy propane ignition[J].Chinese Journal of High Press Physics, 2003, 17(3):70-72.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb200303002
    [12] Brower K R.Explosive reactions of liquid mixtures of chlorine trifluoride with hydrocarbons and halocarbons[J].J Fluo Chem, 1986, 31(3):333-349. doi: 10.1016/S0022-1139(00)81435-9
    [13] von Elbe G, McHale E T.Chemical Initiation of FAE Clouds[M].Washington:Atlantic Research Corporation, 1980:1-21.
    [14] Brower K R.Fluorination of alkanes by chlorine trifluoride hydride abstraction mechanism[J].J Org Chem, 1987, 52:798-802. doi: 10.1021/jo00381a017
    [15] Baddiel C B, Cullis C F.The explosive reaction of chlorine trifluoride with paraffin hydrocarbons[C]//Eighth Symposium (International) on Combustion.California: California Institute of Technology, 1991, 8(1): 1089-1095.
    [16] 许学忠, 裴明敬, 李明, 等.碳氢燃料与卤素氟化物的爆炸反应特性[J].火炸药学报, 1999, 22(3):36-37 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb199903011

    Xu X Z, Pei M J, Li M, et al.Explosive reaction characteristics on hydrocarbon and fluorine agent[J].Chinese Journal of Explosives & Propellants, 1999, 22(3):36-37.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb199903011
    [17] 闫华, 贡雪东, 罗永锋, 等.三氟化氯和环氧丙烷反应的理论研究[J].化学学报, 2009, 24:2845-2850. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxxb200924015

    Yan H, Gong X D, Luo Y F, et al.Theoretical study on the reaction of chlorine trifluoride with propylene oxide by density functional theory[J].Acta Chimica Sinica, 2009, 24:2845-2850.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxxb200924015
    [18] Elbe G V, Mchale E T.Chemical Initlation of FAE Clouds[M].Washington D C:Atlantic Research Corporation, 1979, 11:2-18.
    [19] Smirnov N N, Nikitin V F.Ignition of combustion of turbulized dust-air mixture[J].Combust Flame, 2000, 123(1):46-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ccf44044a26d6a777e2b1098f4e35040
    [20] Gonthier K A, Powers J M.A high-resolution numerical method for a two-phase model of deflagration to detonation transition[J].J Com Phys, 2000, 163(2):376-433. doi: 10.1006/jcph.2000.6569
    [21] Politzer P, Lane P.Energetics of ammonium perchlorate decomposition steps[J].J Mol Struct (Theochem), 1998, 454(2):229-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1872d16000f8193fbcbc272ede0ac23f
    [22] Christe K O, Schack C J.Chlorine oxyfluorides[J].Adv Inorg Chem Radiochem, 1976, 18:319-398. doi: 10.1016/S0065-2792(08)60033-3
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  6462
  • HTML全文浏览量:  1899
  • PDF下载量:  257
出版历程
  • 收稿日期:  2013-03-24
  • 修回日期:  2013-04-09

目录

    /

    返回文章
    返回