冲击绝热曲线上单质固体最大压缩比及相应热力学量

段耀勇 郭永辉 邱爱慈

段耀勇, 郭永辉, 邱爱慈. 冲击绝热曲线上单质固体最大压缩比及相应热力学量[J]. 高压物理学报, 2015, 29(2): 136-142. doi: 10.11858/gywlxb.2015.02.008
引用本文: 段耀勇, 郭永辉, 邱爱慈. 冲击绝热曲线上单质固体最大压缩比及相应热力学量[J]. 高压物理学报, 2015, 29(2): 136-142. doi: 10.11858/gywlxb.2015.02.008
DUAN Yao-Yong, GUO Yong-Hui, QIU Ai-Ci. Maximum Compression Ratios of Elemental Solids and Corresponding Thermodynamic Quantities on Shock Adiabat[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 136-142. doi: 10.11858/gywlxb.2015.02.008
Citation: DUAN Yao-Yong, GUO Yong-Hui, QIU Ai-Ci. Maximum Compression Ratios of Elemental Solids and Corresponding Thermodynamic Quantities on Shock Adiabat[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 136-142. doi: 10.11858/gywlxb.2015.02.008

冲击绝热曲线上单质固体最大压缩比及相应热力学量

doi: 10.11858/gywlxb.2015.02.008
基金项目: 国家自然科学基金(51237006)
详细信息
    作者简介:

    段耀勇(1966—), 男,博士,研究员,主要从事计算物理工作.E-mail:duanyaoyong@nint.ac.cn

  • 中图分类号: O535;O52

Maximum Compression Ratios of Elemental Solids and Corresponding Thermodynamic Quantities on Shock Adiabat

  • 摘要: 在三项式状态方程概念框架内构建了单质固体材料的通用状态方程模型,以绝对零度Thomas-Fermi模型结果的一部分近似作为被压缩固体的冷能和冷压,并利用Cowan模型和Faussurier类氢平均原子模型得到离子与电子的热能和热压。数值计算证实,在材料压缩比大于2的条件下,该模型具有通用的特点。利用该模型计算了原子序数从3到70的所有单质固体在冲击绝热曲线上的最大压缩比及相应的温度和压强,并与其他模型所得的结果进行了比较。这些数值结果可供强激波压缩实验参考。

     

  • 图  Al冲击绝热线上压强随密度压缩比的变化

    Figure  1.  Pressure on shock adiabat vs. compression ratio of density for Al

    图  Mo冲击绝热线上压强随密度压缩比的变化

    Figure  2.  Pressure on shock adiabat vs. compression ratio of density for Mo

    图  FCTF模型计算冲击绝热线上压强随压缩比的变化与FCZH模型的比较

    Figure  3.  Comparison of pressure vs. compression ratio on shock adiabat curve between FCZH and FCTF

    图  Au材料激波后粒子速度与压强的关系

    Figure  4.  Pressure vs. particle velocity behind the shock wave front for Au

    图  冲击绝热曲线上最大压缩比随核电荷Z的变化

    Figure  5.  Maximum compression ratio on shock adiabat as a function of nuclear charge

    图  最大密度压缩比处温度随核电荷的变化

    Figure  6.  Temperature at maximum compression ratio as a function of nuclear charge

    图  最大压缩比处压强随核电荷的变化

    Figure  7.  Pressure at maximum compression ratio as a function of nuclear charge

  • [1] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Rev Mod Phys, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755
    [2] Batani D, Balducci A, Beretta D, et al. Equation of state data for gold in the pressure range < 10 TPa[J]. Phys Rev B, 2000, 61(14): 9287-9294. doi: 10.1103/PhysRevB.61.9287
    [3] Matzen M, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Phys Plasmas, 2005, 12(5): 055503. doi: 10.1063/1.1891746
    [4] Burdiak G C, Lebedev S V, Drake R P, et al. The production and evolution of multiple converging radiative shock waves in gas-filled cylindrical liner Z-pinch experiments[J]. High Energ Dens Phys, 2013, 9(1): 52-62. doi: 10.1016/j.hedp.2012.10.006
    [5] Feynman R P, Metropolis N, Teller E. Equations of state of elements based on the generalized Fermi-Thomas theory[J]. Phys Rev, 1949, 75(10): 1561-1573. doi: 10.1103/PhysRev.75.1561
    [6] Rozsnyai B F. Relativistic Hartree-Fock-Slater calculations for arbitrary temperature amd matter density[J]. Phys Rev A, 1972, 5(3): 1137-1149. doi: 10.1103/PhysRevA.5.1137
    [7] More R M, Warren K H, Young D A, et al. A new quotidian equation of state(QEOS)for hot dense matter[J]. Phys Fluids, 1988, 31(10): 3059-3078. doi: 10.1063/1.866963
    [8] Perrot F, Dharma-wardana M W C. Equation of state and transport properties of an interacting multi-species plasma: Application to a multiply ionized Al plasma[J]. Phys Rev E, 1995, 52(5): 5352-5367. doi: 10.1103/PhysRevE.52.5352
    [9] Nikiforov A F, Novikov V G, Solomyannaya A D. Analytical wave functions in self-consistent field models for high-temperature plasma[J]. Laser Part Beams, 1990, 14(4): 765-0779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=LPB14_04\LPB\LPB14_04\S0263034600010454h.xml
    [10] Liberman D A. Self-consistent-field for condensed matter[J]. Phys Rev B, 1979, 20(12): 4981-4989. doi: 10.1103/PhysRevB.20.4981
    [11] Pain J C. Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats[J]. High Energ Dens Phys, 2007, 3(1): 204-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000613432
    [12] Blenski T, Ciichocki B. Variational theory of average-atom and superconfigurations in quantum plasmas[J]. Phys Rev E, 2007, 75(5): 056402. doi: 10.1103/PhysRevE.75.056402
    [13] Faussurier G, Blancard C, Renaudin P. Equation of state of dense plasmas using a screened-hydrogenic model with l-splitting[J]. High Energ Dens Phys, 2008, 4(3): 114-123. http://www.sciencedirect.com/science/article/pii/S1574181808000190
    [14] Rozsnyai B F. Shock Hugoniots based on the self-average atom(SCAA)model. Theory and experiments[J]. High Energ Dens Phys, 2012, 8(1): 88-100. doi: 10.1016/j.hedp.2011.11.012
    [15] Yuan J K, Sun Y S, Zheng S T. Average atom model in hot plasmas[J]. Chinese Journal of Atomic and Molecular Physics. 1995, 12(2): 118-126.
    [16] 朱希睿, 孟续军, 田明锋, 等.等离子体电子压强的Hartree-Fock-Slater自洽场的计算[J].物理学报, 2005, 54(9): 4101-4107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200509026

    Zhu X R, Meng X J, Tian M F, et al. Hartree-Fock-Slater self-consistent field calculation of electron pressure for plasmas[J]. Acta Physics Sinica, 2005, 54(9): 4101-4107. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200509026
    [17] Shock Wave Database[DB]. (2003-07-13)http://teos.ficp.ac.ru/rusbank.
    [18] Porcherot Q, Faussurier G, Blancard C. Thermodynamic conditions of shock Hugoniot curves in hot dense matter[J]. High Energ Dens Phys, 2010, 6(1): 76-83. doi: 10.1016/j.hedp.2009.06.010
    [19] Zel'dovich Y B, Raizer Y P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(Vol. Ⅱ)[M]. New York: Academic Press, 1967: 685-705.
    [20] 徐锡申, 张万箱.实用物态方程理论导引[M].北京: 科学出版社, 1986: 138-537.

    Xu X S, Zhang W X. An Introduction to Practical Theory of Equation of State[M]. Beijing: Science Press, 1986: 138-537. (in Chinese)
    [21] 段耀勇, 郭永辉, 邱爱慈.凝聚态物质状态方程的一个数值模型[J].核聚变与等离子体物理, 2011, 31(2): 97-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbydlztwl201102001

    Duan Y Y, Guo Y H, Qiu A C. A numerical model for the equation of state for condensed matter[J]. Nuclear Fusion and Plasma Physics, 2011, 31(2): 97-104. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbydlztwl201102001
    [22] Duan Y Y, Guo Y H, Qiu A C. Shock wave and particle velocities of typical metals on shock adiabats[J]. Plasma Sci Technol, 2013, 15(8): 727. doi: 10.1088/1009-0630/15/8/02
    [23] Bell A R. New equations of state for Medusa, RL-80-091[R]. Chilton: Rutherford and Appleton Labs, 1980.
    [24] 谭华.实验冲击波物理导引[M].北京: 国防工业出版社, 2007: 52-61.

    Tan H. Introduction to Experimental Shock-Wave Physics[M]. Beijing: National Defence Industry Press, 2007: 52-61. (in Chinese)
    [25] 汤文辉, 张若棋.物态方程理论及计算概论[M].第2版.北京: 高等教育出版社, 2008: 86-123.

    Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State[M]. 2nd ed. Beijing: Higher Education Press, 2008: 86-123. (in Chinese)
    [26] Woan G. The Cambridge Handbook of Physics Formulas[M]. Beijing: Cambridge University Press & Beijing World Publishing Corporation, 2010: 124-125.
    [27] 李维新.一维不定常流与冲击波[M].北京: 国防工业出版社, 2003: 34-55.

    Li W X. One-Dimensional Non-Steady Flow and Shock Waves[M]. Beijing: National Defence Industry Press, 2003: 34-55. (in Chinese)
    [28] Atzeni S, Meyer-ter-Vehn J. The Physics of Inertial Fusion[M]. Oxford: Clarendon Press, 2004: 343-345.
    [29] Johnson J D. Bound and estimate for the maximum compression of single shocks[J]. Phys Rev E, 1999, 59: 3727-3728. doi: 10.1103/PhysRevE.59.3727
    [30] Gschneidner K A Jr. Physical properties and interrelationships of metallic and semi-metallic elements[M]//Seitz F, Turnbull D. Solid State Physics(Vol. 16). New York & London: Academic Press, 1964: 275-426.
  • 加载中
图(7)
计量
  • 文章访问数:  6346
  • HTML全文浏览量:  2135
  • PDF下载量:  260
出版历程
  • 收稿日期:  2013-02-01
  • 修回日期:  2013-05-04

目录

    /

    返回文章
    返回