电磁驱动产生超强磁场的参数优化设计

邓爱东 张华 杨显俊

邓爱东, 张华, 杨显俊. 电磁驱动产生超强磁场的参数优化设计[J]. 高压物理学报, 2015, 29(2): 123-128. doi: 10.11858/gywlxb.2015.02.006
引用本文: 邓爱东, 张华, 杨显俊. 电磁驱动产生超强磁场的参数优化设计[J]. 高压物理学报, 2015, 29(2): 123-128. doi: 10.11858/gywlxb.2015.02.006
DENG Ai-Dong, ZHANG Hua, YANG Xian-Jun. Parameters Optimization of the Strong Magnetic Field Generation Driven by Electromagnetic Force[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 123-128. doi: 10.11858/gywlxb.2015.02.006
Citation: DENG Ai-Dong, ZHANG Hua, YANG Xian-Jun. Parameters Optimization of the Strong Magnetic Field Generation Driven by Electromagnetic Force[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 123-128. doi: 10.11858/gywlxb.2015.02.006

电磁驱动产生超强磁场的参数优化设计

doi: 10.11858/gywlxb.2015.02.006
基金项目: 国家自然科学基金(11175028)
详细信息
    作者简介:

    邓爱东(1989—), 男,硕士,主要从事超强磁场产生研究.E-mail:dengad@126.com

    通讯作者:

    杨显俊(1958—), 男,博士生导师,主要从事高能量密度物理研究.E-mail:yang_xianjun@iapcm.ac.cn

  • 中图分类号: O381

Parameters Optimization of the Strong Magnetic Field Generation Driven by Electromagnetic Force

  • 摘要: 利用零维模型计算分析电磁驱动柱形薄套筒内爆压缩内嵌轴向磁场的过程。通过求解LC回路方程和套筒运动方程构成的方程组,得到3个无量纲参数(h, A, Π)的最优取值和磁通压缩过程的磁能转换效率。计算表明,在恒定电流驱动,且h < 0.2情况下,套筒半径的压缩比可达10以上。在1 MJ的驱动能量下,通过适当调节参数hAΠ,使其接近最优取值,模拟产生了1 167 T的超强磁场,同时磁能转化效率达到47.3%。计算结果和优化参数对内爆磁通压缩实验设计具有一定的理论指导意义。

     

  • 图  磁通压缩模型

    Figure  1.  The flux compression model

    图  压缩比、磁场放大率随参数h的变化

    Figure  2.  Compreesion ratio and magnetic field amplification versus parameter h

    图  驱动电路等效模型

    Figure  3.  The equivalent driven circuit

    图  最优Π下,磁场放大率随参数(hA)的变化

    Figure  4.  Manetic field amplification versus parameter(h, A) for the optimal Π

    图  最优Π下,能量转化效率随参数(hA)的变化

    Figure  5.  Energy conversion efficiency versus parameter(h, A) for the optimal Π

    图  最大磁场随参数(hΠ)的变化

    Figure  6.  The maximum magnetic field versus (h, Π)

    图  能量转换效率随参数(hΠ)的变化

    Figure  7.  Energy conversion efficiency versus (h, Π)

    图  最大磁场随参数(hΠ)的变化

    Figure  8.  The maximum magnetic field versus (h, Π)

    图  能量转换效率随参数(hΠ)的变化

    Figure  9.  Energy conversion efficiency versus (h, Π)

    图  10  轴向磁场随时间的变化

    Figure  10.  The axial magnetic field versus time

    图  11  能量转换效率随时间的变化

    Figure  11.  Energy conversion efficiency versus time

  • [1] Herlach F, Miura N. High Magnetic Field: Science and Technology[M]. Singapore: World Scientific Publishing Company, 2003.
    [2] Fujioka S, Zhang Z, Ishihara K, et al. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser[J]. Scientific Reports, 2013, 3: 1170. doi: 10.1038/srep01170
    [3] 彭涛, 辜承林.脉冲强磁场发展技术[J].核技术, 2003, 26(3): 185-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs200303004

    Peng T, Gu C L. Technical development of strong plused magnet[J]. Nuclear Techiques, 2003, 26(3): 185-188. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs200303004
    [4] Sims J R, Rickel D G, Swenson C A, et al. Assembly, commissioning and operation of the NHMFL 100 Tesla multi-pulse magnet system[J]. IEEE T Appl Supercon, 2008, 18(2): 587-591. doi: 10.1109/TASC.2008.922541
    [5] 夏静, 程远.我国脉冲强磁场研究取得重大突破[N].光明日报, 2013-08-13(1).

    Xia J, Cheng Y. Major breakthrough were made in the research of the pulsed high magnetic field[N]. Guangming Daily, 2013-08-13(1). (in Chinese)
    [6] Miura N, Matsuda Y H, Uchida K, et al. New megagauss laboratory of ISSP at Kashiwa[J]. Physica B, 2001, 294: 562-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4007617bee270d57a8460f25001e608
    [7] Boyko B A, Bykov A I, Dolotenko M I, et al. Generation of magnetic fields above 2 000 T with the cascade magnetocumulative generator MC-1[C]//Proceedings of the 8th International Conference on Megagauss Magnetic Field Generation and Related Topics. Tallahassee, Florida, 1998.
    [8] 谷卓伟, 罗浩, 张恒第, 等.炸药柱面内爆磁通量压缩实验技术研究[J].物理学报, 2013, 62(17): 170701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201317024

    Gu Z W, Luo H, Zhang H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion[J]. Acta Physica Sinina, 2013, 62(17): 170701. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201317024
    [9] Yang X J, Wang S C, Deng A D, et al. Mechanism and simulation of generating pulsed strong magnetic field[J]. Chin Phys Lett, 2014, 31(10): 100702. doi: 10.1088/0256-307X/31/10/100702
    [10] Gotchev O V, Chang P Y, Knauer J P, et al. Laser-driven magnetic-flux field compression in high-energy-density plasma[J]. Phys Rev Lett, 2009, 103: 215004. doi: 10.1103/PhysRevLett.103.215004
    [11] Alikhanov S G, Belan V G, Ivanchenko A I, et al. The production of pulsed megagauss fields by compression of the metallic cylinder in Z-pinch configuration[J]. J Phys E, 1968, 1: 543. doi: 10.1088/0022-3735/1/5/310
    [12] Miura N, Kido G, Oguro I, et al. Generation of megagauss magnetic fields and their application to solid state physics[C]//Physics in High Magnetic Fields, Colloque Internationaux. Grenoble, France, 1975, 242: 345-353.
    [13] Matsuda Y H, Herlach F, Ikeda S, et al. Generation of 600 T by electromagnetic flux compression with improved implosion symmetry[J]. Rev Sci Instrum, 2002, 73: 4288-4494. doi: 10.1063/1.1520733
    [14] Takeyama S, Kojima E. A copper-lined magnet coil with maximum field of 700 T for electromagnetic flux compression[J]. J Phys D, 2011, 44: 425003. doi: 10.1088/0022-3727/44/42/425003
    [15] 胡熙静, 刘桂贤, 高党忠, 等. 1 MJ电容器组能源的电磁内爆方案评估[J].爆轰波与冲击波, 1996(3): 37-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199601023529

    Hu X J, Liu G X, Gao D Z, et al. The estimation of electro-magnetic implosion scheme of 1 MJ capacitor bank[J]. Detonation and Impact Wave, 1996(3): 37-46. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199601023529
    [16] Knoepfel H. Pulsed High Magnetic Fields[M]. Amsterdam: Springer-Verlag, 1970.
    [17] Potter D E. The formation of high-density Z-pinches[J]. Nuclear Fusion, 1978, 18(6): 813. doi: 10.1088/0029-5515/18/6/008
    [18] Marrs R E, Wira K. Electromagnetic implosion of metal liners[J]. J Appl Phys, 1982, 53(1): 230-236. doi: 10.1063/1.331599
  • 加载中
图(11)
计量
  • 文章访问数:  6730
  • HTML全文浏览量:  2264
  • PDF下载量:  211
出版历程
  • 收稿日期:  2014-06-03
  • 修回日期:  2014-08-25

目录

    /

    返回文章
    返回