镧系氮化物压致结构相变的第一性原理计算

杨晓翠 赵衍辉 罗香怡 肖俊平

杨晓翠, 赵衍辉, 罗香怡, 肖俊平. 镧系氮化物压致结构相变的第一性原理计算[J]. 高压物理学报, 2014, 28(5): 545-550. doi: 10.11858/gywlxb.2014.05.006
引用本文: 杨晓翠, 赵衍辉, 罗香怡, 肖俊平. 镧系氮化物压致结构相变的第一性原理计算[J]. 高压物理学报, 2014, 28(5): 545-550. doi: 10.11858/gywlxb.2014.05.006
YANG Xiao-Cui, ZHAO Yan-Hui, LUO Xiang-Yi, XIAO Jun-Ping. First-Principles Calculations of Pressure-Induced Phase Transition of Lanthanide Mononitrides[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 545-550. doi: 10.11858/gywlxb.2014.05.006
Citation: YANG Xiao-Cui, ZHAO Yan-Hui, LUO Xiang-Yi, XIAO Jun-Ping. First-Principles Calculations of Pressure-Induced Phase Transition of Lanthanide Mononitrides[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 545-550. doi: 10.11858/gywlxb.2014.05.006

镧系氮化物压致结构相变的第一性原理计算

doi: 10.11858/gywlxb.2014.05.006
基金项目: 吉林省教育厅“十一五”科学技术研究项目(2010217)
详细信息
    作者简介:

    杨晓翠(1965—), 女, 硕士,教授,主要从事凝聚态物理研究.E-mail:yxc0622@163.com

  • 中图分类号: O521.23

First-Principles Calculations of Pressure-Induced Phase Transition of Lanthanide Mononitrides

  • 摘要: 利用基于密度泛函理论的第一性原理计算, 得到了常压下镧系氮化物的晶格常数,以及在压力作用下镧系氮化物从NaCl型结构(B1)到CsCl型结构(B2)转变的压力。并把考虑电子自旋极化与不考虑电子自旋极化作用的计算结果进行了对比,分析了4f电子对镧系氮化物这些强关联体系的压致结构转变压力的影响。结果显示:5个镧系元素的氮化物(GdN、TbN、DyN、HoN和ErN)从B1相到B2相转变的压力与电子自旋极化作用关系很大,而其它镧系氮化物的相变压力与电子自旋极化作用的关系很小。

     

  • 图  采用GGA+S算法计算得到的镧系氮化物发生从B1相到B2相结构转变的压力

    Figure  1.  Pressure-induced phase transition pressures of lanthanide mononitrides by GGA+S

    表  1  镧系氮化物晶格常数本研究的计算结果、他人的实验结果与计算结果

    Table  1.   Calculated equilibrium lattice parameters a0 of LnN together with experimental and other theoretical values

    LnN Lattice parameters a0/(nm)
    GGA GGA+S LDA LDA+S Exp. Other theory
    LaN 0.537 5 0.537 5 0.526 9 0.527 6 0.530 1[21] 0.530 7[5]
    CeN 0.506 5 0.523 1 0.501 4 0.505 7 0.501 3[22] 0.503 6[23]
    PrN 0.509 6 0.517 0 0.490 7 0.504 4 0.515 5[21] 0.507 9[23]
    NdN 0.502 7 0.517 9 0.488 7 0.505 8 0.512 3[21] 0.502 1[23]
    PmN 0.496 1 0.513 1 0.481 7 0.502 3 - 0.498 4[23]
    SmN 0.495 5 0.516 5 0.482 4 0.504 8 0.504 8[21] 0.494 7[23]
    EuN 0.494 1 0.516 8 0.480 0 0.504 6 0.501 4[21] 0.492 5[23]
    GdN 0.492 0 0.501 8 0.477 8 0.493 2 0.497 4[21] 0.497 4[24]
    TbN 0.495 6 0.475 7 0.478 2 0.470 9 0.493 3[21] 0.490 4[23]
    DyN 0.487 7 0.481 8 0.475 4 0.470 3 0.490 5[21] 0.487 4[23]
    HoN 0.489 4 0.485 6 0.474 3 0.472 1 0.487 4[21] 0.485 1[23]
    ErN 0.485 4 0.485 9 0.473 0 0.472 8 0.483 9[21] 0.478 9[23]
    TmN 0.483 2 0.483 6 0.470 9 0.470 9 0.480 9[21] 0.482 3[23]
    YbN 0.483 4 0.483 4 0.471 2 0.471 0 0.478 5[21] 0.482 5[23]
    LuN 0.484 0 0.483 0 0.473 9 0.473 1 0.476 6[21] 0.482 6[23]
    下载: 导出CSV

    表  2  镧系氮化物结构相变压力的计算结果、他人的实验结果与计算结果

    Table  2.   Transition pressure of LnN, together with experimental and other theoretical results

    LnN pt/(GPa)
    GGA GGA+S LDA LDA+S Exp. Other theory
    LaN 65 61 57 58 >60[8] 26.9[4]
    CeN 53 55 57 47 65-70[11] 62[7], 88[10], 68[11]
    PrN 60 45 42 32 - -
    NdN 52 39 38 28 - -
    PmN 49 46 39 28 - 3.4[12]
    SmN 51 38 41 31 - -
    EuN 55 44 45 38 - -
    GdN 65 110 54 97 - -
    TbN 70 181 60 158 >43[13] >250[13], 136[10]
    DyN 77 160 68 140 - -
    HoN 88 144 77 130 - -
    ErN 95 140 95 122 - -
    TmN 106 106 98 98 - -
    YbN 137 137 127 127 - -
    LuN 325 320 330 325 - -
    下载: 导出CSV
  • [1] Strange P, Svane A, Temmerman W M, et al. Understanding the valency of rare earths from first-principles theory[J]. Nature, 1999, 399(6738): 756-758. doi: 10.1038/21595
    [2] Duan C-G, Sabirianov R F, Mei W N, et al. Electronic, magnetic and transport properties of rare-earth monopnictides[J]. J Phys: Condens Matter, 2007, 19(31): 315220. doi: 10.1088/0953-8984/19/31/315220
    [3] Imamura H, Imahashi T, Zaimi M, et al. Preparation and characteristics of various rare earth nitrides[J]. J Alloy Compd, 2008, 451(1/2): 636-639. http://www.sciencedirect.com/science/article/pii/S0925838807009061
    [4] Vaitheeswaran G, Kanchana V, Rajagopalan M. Structural phase stability and superconductivity of LaN[J]. Solid State Commun, 2002, 124(3): 97-102. doi: 10.1016/S0038-1098(02)00481-7
    [5] Ciftci Y O, Colakoglu K, Deligoz E, et al. The first-principles study on the LaN[J]. Mater Chem Phys, 2008, 108(1): 120-123. doi: 10.1016/j.matchemphys.2007.09.012
    [6] Ghezail M, Amrani B, Cherchab Y, et al. Strucutral and electronic properties of LaN[J]. Mater Chem Phys, 2008, 112(3): 774-778. doi: 10.1016/j.matchemphys.2008.06.031
    [7] Svane A, Szotek Z, Temmerman W M, et al. Electronic structure of cerium monopnictides under pressure[J]. J Phys: Condens Matter, 1998, 10(22): 5309-5325. http://adsabs.harvard.edu/abs/1998JPCM...10.5309S
    [8] Schneider S B, Baumann D, Salamat A, et al. Reversible high-pressure phase transition in LaN[J]. J Appl Phys, 2012, 111(9): 093503. doi: 10.1063/1.4709392
    [9] Gueddim A, Fakroun N, Bouarissa N, et al. A density functional study of structural and elastic properties of LaN under high pressure[J]. Mater Chem Phys, 2009, 118(2/3): 427-431. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=44826485&site=ehost-live
    [10] Rukmangad A, Aynyas M, Sanyal S P. Structural and elastic properties of rare-earth nitrides at high pressure[J]. Indian J Pure Appl Phys, 2009, 47(2): 114-118. http://www.researchgate.net/publication/259337757_Structural_and_elastic_properties_of_rare-earth_nitrides_at_high_pressure
    [11] Staun Olsen J, Jørgensen J E, Gerward L, et al. Compressibility and structural stability of CeN from experiment and theory: The B1-B2 transition[J]. J Alloy Compd, 2012, 533(1): 29-32. http://www.sciencedirect.com/science/article/pii/S0925838812006627
    [12] Pandit P, Srivastava V, Rajagopalan M, et al. Pressure-induced electronic and structural phase transformation properties in half-metallic PmN: A first-principles approach[J]. Phys B, 2008, 403(23-24): 4333-4337. doi: 10.1016/j.physb.2008.09.036
    [13] Jakobsen J M, Madsen G K H, Jørgensen J E, et al. High pressure behavior of TbN: An X-ray diffraction and computational study[J]. Solid State Commun, 2002, 121(8): 447-452. doi: 10.1016/S0038-1098(01)00506-3
    [14] Clark S, Segall M, Pickard C, et al. First principles methods using CASTEP[J]. Z Kristallogr, 2005, 220(5/6): 567-570. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg38/ref38&dbid=16&doi=10.1139%2Fv11-049&key=10.1524%2Fzkri.220.5.567.65075
    [15] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11): 7892-7895. doi: 10.1103/PhysRevB.41.7892
    [16] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [17] Ceperley D M, Alder B J. Ground state of the electron gas by stochastic method[J]. Phys Rev Lett, 1980, 45(7): 566-569. doi: 10.1103/PhysRevLett.45.566
    [18] Anisimov V I, Aryasetiawan F, Lichtenstein A I. First-principles calculations of the electronic structure and spectra of strongly correlated system: The LDA+U method[J]. J Phys: Condens Matter, 1997, 9(4): 767-808. doi: 10.1088/0953-8984/9/4/002
    [19] 丁迎春, 刘海军, 蒋孟衡, 等.高压下BeP2N4结构相变和电子结构的第一性原理计算[J].高压物理学报, 2012, 26(6): 674-680. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201206012.htm

    Ding Y C, Liu H J, Jiang M H, et al. First-principles investigations on structural transformation and electronic properties of under high pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 674-680. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL201206012.htm
    [20] 郝爱民, 周铁军, 朱岩, 等.高压下TiN的结构相变、弹性性质和热动力学性质第一性原理计算[J].高压物理学报, 2012, 26(4): 395-401. http://www.cqvip.com/QK/96553X/201204/43115588.html

    Hao A M, Zhou T J, Zhu Y, et al. First-principles investigations on structure transformation, elastic and thermodynamic properties of TiN under high pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 395-401. http://www.cqvip.com/QK/96553X/201204/43115588.html
    [21] Wyckoff R W G. Crystal Structure[M]. New York: John Wiley and Sons, 1986: 85-91.
    [22] Olcese G L. Interconfiguration fluctuation of cerium in CeN as a function of temperature and pressure[J]. J Phys F Met Phys, 1979, 9(3): 569-578. doi: 10.1088/0305-4608/9/3/018
    [23] Yang J, Gao F, Wang H, et al. Elastic properties and hardness calculations of lanthanide nitrides[J]. Mater Chem Phys, 2010, 119(3): 499-504. doi: 10.1016/j.matchemphys.2009.10.004
    [24] Li D X, Haga Y, Shida H, et al. Magnetic properties of stoichiometric Gd monopnictides[J]. J Phys: Condens Matter, 1997, 9(48): 10777-10788. doi: 10.1088/0953-8984/9/48/019
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  6237
  • HTML全文浏览量:  2313
  • PDF下载量:  295
出版历程
  • 收稿日期:  2013-01-30
  • 修回日期:  2013-04-11

目录

    /

    返回文章
    返回