超高压对蛋白质的影响

李仁杰 廖小军 胡小松 吴继红

李仁杰, 廖小军, 胡小松, 吴继红. 超高压对蛋白质的影响[J]. 高压物理学报, 2014, 28(4): 498-506. doi: 10.11858/gywlxb.2014.04.017
引用本文: 李仁杰, 廖小军, 胡小松, 吴继红. 超高压对蛋白质的影响[J]. 高压物理学报, 2014, 28(4): 498-506. doi: 10.11858/gywlxb.2014.04.017
LI Ren-Jie, LIAO Xiao-Jun, HU Xiao-Song, WU Ji-Hong. Effects of High Hydrostatic Pressure on Proteins[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 498-506. doi: 10.11858/gywlxb.2014.04.017
Citation: LI Ren-Jie, LIAO Xiao-Jun, HU Xiao-Song, WU Ji-Hong. Effects of High Hydrostatic Pressure on Proteins[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 498-506. doi: 10.11858/gywlxb.2014.04.017

超高压对蛋白质的影响

doi: 10.11858/gywlxb.2014.04.017
基金项目: 国家科技支撑计划(2011BAD27B02-03-02);农业部948重点项目(2011G20)
详细信息
    作者简介:

    李仁杰(1986-), 男, 博士研究生, 主要从事农产品加工及贮藏研究.E-mail:lrjcau@gmail.com

    通讯作者:

    吴继红(1964-), 女, 博士, 教授, 博士生导师, 主要从事农产品加工及贮藏研究.E-mail:wjhcau@hotmail.com

  • 中图分类号: O521.9;Q518.4

Effects of High Hydrostatic Pressure on Proteins

  • 摘要: 在现有的超高压对蛋白质影响研究的基础上,详细地总结了超高压对蛋白质的分子体积、非共价键和分子结构的影响。在超高压作用下,蛋白质的分子体积被压缩变小;压力通过改变蛋白质分子的氢键、离子键、水合作用和疏水相互作用来影响蛋白质结构;低于800 MPa的压力会造成蛋白质分子的二级、三级和四级结构的改变,其中四级结构对压力最敏感,三级结构次之,二级结构的改变较小;高于8 GPa的压力会影响蛋白质分子的一级结构。

     

  • 图  超高压对蛋白质分子的影响[7]

    Figure  1.  Influence of high pressure on the conformation of protein[7]

    图  超高压引起蛋白质分子解聚的模式图[7]

    Figure  2.  Schematic diagram of protein dissociation by pressure[7]

    图  超高压引起Arc阻遏蛋白二聚体的解离[52]

    Figure  3.  Dissociation of Arc repressor induced by high pressure[52]

    表  1  超高压对蛋白质分子体积的影响

    Table  1.   Influences of ultra-high pressure on the molecular volume of proteins

    Protein Pressure/(MPa) Molecular volume changes Test method
    Apomyoglobin 250 -61 mL/mol[15] Fluorescence
    Staphylococcal nuclease 100 -50 mL/mol[16] DSC
    Staphylococcal nuclease 300 -69--104 mL/mol[17] NMR, Fluorescence
    Bovine pancreatic ribonuclease 250 -21 mL/mol[14] NMR
    Flavodoxin from Peptostreptococcus elsdenii 870 -74 mL/mol[18] Fluorescence
    Flavodoxin from Desulfovibrio vulgaris 470 -63 mL/mol[18] Fluorescence
    Flavodoxin from Azotobacter vinelandii 1 060 -64 mL/mol[18] Fluorescence
    Metmyoglobin 60-600 -51--114 mL/mol[19] DSC, UV spectrum
    Cytochrome oxidase 250 -80 mL/mol[20] DSC, Visible spectrum
    Cytochrome b562 110 -102 mL/mol[21] NMR
    T4 lysozyme 200 -0.194 nm3[22] NMR, High pressure crystallography
    T4 lysozyme 50 -0.210 nm3[22] NMR, High pressure crystallography
    Note:DSC means differential scanning calorimetry; NMR means nuclear magnetic resonance.
    下载: 导出CSV

    表  2  超高压对蛋白质二级结构的影响

    Table  2.   Influences of ultra-high pressure on the secondary structure of proteins

    Protein Pressure/(MPa) Changes of secondary structure Test method
    β-lactoglobulin 140 No change[43] FTIR
    β-lactoglobulin 600 The contents of α-helix and β-sheet decrease from
    41% and 34% to 34% and 30%, respectively; The
    content of random coil increases from 6% to 30%[44]
    Fourier transform Raman
    Ovalbumin 600 The content of α-helix decreases from 15% to 10%;
    The contents of β-sheet and β-corner increase from
    54% and 12% to 37% and 25%, respectively[44]
    Fourier transform Raman
    Ankyrin 100-600 35% of the α-helix structure is lost at 400 MPa[45] FTIR, SAXS
    Lysozyme 20-900 The secondary structure begins to change at
    700 MPa; 54% of α-helix structure is lost
    and all β-sheet disappear at 800 MPa[33]
    Raman
    Bovine pancreatic ribonuclease 0.1-1 400 The secondary structure is slightly changed at
    570 MPa, and completely changed at 1 240 MPa[46]
    FTIR
    Note:FTIR means Fourier transform infrared spectroscopy.
    下载: 导出CSV

    表  3  超高压对蛋白质三级结构的影响

    Table  3.   Influences of ultra-high pressure on the tertiary structure of proteins

    Protein Pressure/(MPa) Changes of tertiary structure Test method
    Ubiquitin 600 The α-C-α-C distance between Leu 8 and Glu34 increases
    from 0.9 nm to 1.5 nm, and the number of water
    molecules per protein increases from 17.9 to 23.4[31]
    NMR
    Cytochrome P450 400 I-helix in the active site is changed[49-50] UV spectrum, Fluorescence
    Pancreatic trypsin inhibitor 200 The entire secondary and tertiary structures
    are altered in the folded ensemble of
    pancreatic trypsin inhibitor[51]
    NMR
    T4 lysozyme 200 The protein molecule exhibits a more compact
    structure than the native; C-helix is removed
    about 0.025 nm to the central[22]
    NMR, High pressure
    crystallography
    Urate oxidase 150 Volume of molecule is decreased by 0.3%;The polar
    active-site increases by 11%, and the hydrophobic
    cavity (0.19 nm3) decreases by 16%[37]
    Fluorescence, High pressure
    crystallography
    下载: 导出CSV

    表  4  超高压对蛋白质四级结构的影响

    Table  4.   Influences of ultra-high pressure on the quaternary structure of proteins

    Protein Pressure/(MPa) Changes of quaternary structure Test method
    Urate oxidase (Four
    monomers)
    150-175 The molecule is dissociated reversibly
    at 150 MPa and irreversibly at
    175 MPa followed by aggregation[37]
    Fluorescence,
    High pressure
    crystallography
    Lactate dehydrogenases
    (Four monomers)
    100-200 The molecule is dissociated into
    monomers at 200 MPa[53]
    Fluorescence
    β dimer tryptophan synthase 80-240 50% of the molecules are dissociated
    at 220 MPa, and the conformation is
    recovered in 2-3 min after compression[54]
    Fluorescence
    Yeast jexokinase (Dimer) 0.1-240 The molecules are completely
    dissociated at 200 MPa[55]
    Fluorescence
    GorEL (Tetradecameric) and
    GorES (Heptameric) from
    Escherichia coli
    50-300 GorES and GorEL dissociate at 250 MPa;
    GorES reassociate readily after high
    pressure release, but GorEL does not[56]
    Electrophoresis,
    UV spectrum
    Enolase (A tripolymer with
    three subunits α, β, γ)
    0.1-300 Molecules are dissociated into
    two parts at 300 MPa[57]
    Fluorescence
    Lactose repressor protein
    (Tetramer)
    0.1-300 Molecules begin to dissociate at 160 MPa
    and completely collapse at 280 MPa[58]
    Fluorescence, Visible
    spectrum
    Triosephosphate isomerase 0.1-350 50% of the proteins dissociate at 260 MPa
    and completely collapse at 350 MPa[59]
    Fluorescence, Size-
    exclusion FPLC
    Yeast glyceraldehyde phosphate
    dehydrogenase (Tetramer)
    0.1-280 Molecules begin to dissociate at 120 MPa
    and completely collapse at 200 MPa[60]
    Fluorescence
    Arc repressor (Dimer) 0-500 Arc repressor begins to dissociate at 100-200 MPa
    and completely collapses at 300-500 MPa[52, 61]
    Two-dimensional NMR
    Note:FPLC means fast protein liquid chromatography.
    下载: 导出CSV
  • [1] 周林燕, 廖红梅, 张文佳, 等.食品高压技术研究进展和应用现状[J].中国食品学报, 2009, 9(4): 165-169. http://www.cnki.com.cn/Article/CJFDTotal-ZGSP200905029.htm

    Zhou L Y, Liao H M, Zhang W J, et al. Review of high pressure technologies for food processing[J]. Journal of Chinese Institute of Food Science and Technology, 2009, 9(4): 165-169. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZGSP200905029.htm
    [2] 廖小军.超高压技术在果蔬加工中大有可为[J].农业工程技术, 2009(9): 36-38. http://www.cnki.com.cn/Article/CJFDTotal-NYGN200909015.htm

    Liao X J. HHP has bright prospect in fruit and vegetable processing[J]. Agriculture Engineering Technology, 2009(9): 36-38. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-NYGN200909015.htm
    [3] 上官丽娟, 马永昆, 崔凤杰, 等.高压处理对辣根过氧化物酶活性及构象的影响[J].高压物理学报, 2011, 25(5): 475-480. http://www.cqvip.com/QK/96553X/20115/39721767.html

    Shangguan L J, Ma Y K, Cui F J, et al. Effects of high pressure processing on the activity and the conformation of horseradish peroxidase[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 475-480. (in Chinese) http://www.cqvip.com/QK/96553X/20115/39721767.html
    [4] 马汉军, 周光宏, 余小领, 等.高压与加热协同处理对牛肌肉中蛋白酶活性的影响[J].高压物理学报, 2011, 25(1): 89-96. http://www.cqvip.com/QK/96553X/201101/37267496.html

    Ma H J, Zhou G H, Yu X L, et al. Effects of combined high pressure and thermal treatment on protease activities in beef muscle[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 89-96. (in Chinese) http://www.cqvip.com/QK/96553X/201101/37267496.html
    [5] 陈小强, 章银军, 张士康, 等.超高压处理对毛栓菌多酚氧化酶的影响[J].高压物理学报, 2012, 26(2): 235-240. http://www.cqvip.com/QK/96553X/201202/41757138.html

    Chen X Q, Zhang Y J, Zhang S K, et al. Effect of high pressure processing on polyphenol oxidase from trametes trogii[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 235-240. (in Chinese) http://www.cqvip.com/QK/96553X/201202/41757138.html
    [6] Mozhaev V V, Heremans K, Frank J, et al. High pressure effects on protein structure and function[J]. Proteins Struct Funct Bioinf, 1996, 24(1): 81-91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R
    [7] Silva J L, Foguel D, Royer C A. Pressure provides new insights into protein folding, dynamics and structure[J]. Trends Biochem Sci, 2001, 26(10): 612-618. doi: 10.1016/S0968-0004(01)01949-1
    [8] Boonyaratanakornkit B B, Park C B, Clark D S. Pressure effects on intra-and intermolecular interactions within proteins[J]. Biochim Biophys Acta, 2002, 1595(1/2): 235-249. http://europepmc.org/abstract/MED/11983399
    [9] Eisenmenger M J, Reyes-De-Corcuera J I. High pressure enhancement of enzymes: A review[J]. Enzyme Microb Technol, 2009, 45(5): 331-347. doi: 10.1016/j.enzmictec.2009.08.001
    [10] Gross M, Jaenicke R. Proteins under pressure: The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes[J]. Eur J Biochem, 1994, 221(2): 617-630. doi: 10.1111/j.1432-1033.1994.tb18774.x
    [11] 卜平宇, 夏泉.普通化学[M].北京: 科学出版社, 2009: 253.

    Bu P Y, Xia Q. General Chemistry[M]. Beijing: Science Press, 2009: 253. (in Chinese)
    [12] Bridgman P W. The Physics of High Pressure[M]. London: George Bell & Sons Ltd, 1931: 450.
    [13] Gekko K, Hasegawa Y. Compressibility-structure relationship of globular proteins[J]. Biochemistry, 1986, 25(21): 6563-6571. doi: 10.1021/bi00369a034
    [14] Prehoda K E, Mooberry E S, Markley J L. Pressure denaturation of proteins: Evaluation of compressibility effects[J]. Biochemistry, 1998, 37(17): 5785-5790. doi: 10.1021/bi980384u
    [15] Vidugiris G J A, Royer C A. Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states[J]. Biophys J, 1998, 75(1): 463-470. doi: 10.1016/S0006-3495(98)77534-4
    [16] Seemann H, Winter R, Royer C A. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease[J]. J Mol Biol, 2001, 307(4): 1091-1102. doi: 10.1006/jmbi.2001.4517
    [17] Roche J, Caro J A, Norberto D R, et al. Cavities determine the pressure unfolding of proteins[J]. Proc Natl Acad Sci, 2012, 109(18): 6945-6950. doi: 10.1073/pnas.1200915109
    [18] Visser A, Li T M, Drickamer H G, et al. Effect of pressure upon the fluorescence of various flavodoxins[J]. Biochemistry, 1977, 16(22): 4879-4882. doi: 10.1021/bi00641a020
    [19] Zipp A, Kauzmann W. Pressure denaturation of metmyoglobin[J]. Biochemistry, 1973, 12(21): 4217-4228. doi: 10.1021/bi00745a028
    [20] Kornblatt J A, Hui Bon Hoa G, Heremans K. Pressure-induced effects on cytochrome oxidase: The aerobic steady state[J]. Biochemistry, 1988, 27(14): 5122-5128. doi: 10.1021/bi00414a026
    [21] Fuentes E J, Wand A J. Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure[J]. Biochemistry, 1998, 37(28): 9877-9883. doi: 10.1021/bi980894o
    [22] Collins M D, Quillin M L, Hummer G, et al. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography[J]. J Mol Biol, 2007, 367(3): 752-763. doi: 10.1016/j.jmb.2006.12.021
    [23] Abe F, Kato C, Horikoshi K. Pressure-regulated metabolism in microorganisms[J]. Trends Microbiol, 1999, 7(11): 447-453. doi: 10.1016/S0966-842X(99)01608-X
    [24] Heremans L, Heremans K. Raman spectroscopic study of the changes in secondary structure of chymotrypsin: Effect of pH and pressure on the salt bridge[J]. Biochim Biophys Acta, 1989, 999(2): 192-197. doi: 10.1016/0167-4838(89)90217-3
    [25] Hei D J, Clark D S. Pressure stabilization of proteins from extreme thermophiles[J]. Appl Environ Microbiol, 1994, 60(3): 932-939. doi: 10.1128/AEM.60.3.932-939.1994
    [26] Day R, García A E. Water penetration in the low and high pressure native states of ubiquitin[J]. Proteins Struct Funct Bioinf, 2008, 70(4): 1175-1184. doi: 10.1002/prot.21562
    [27] Dadarlat V M, Post C B. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions[J]. Biophys J, 2006, 91(12): 4544-4554. doi: 10.1529/biophysj.106.087726
    [28] 王镜岩.生物化学[M].北京: 高等教育出版社, 2002: 626.

    Wang J Y. Biochemistry[M]. Beijing: Higher Education Press, 2002: 626. (in Chinese)
    [29] Hayert M, Perrier-Cornet J M, Gervais P. A simple method for measuring the pH of acid solutions under high pressure[J]. J Phys Chem A, 1999, 103(12): 1785-1789. doi: 10.1021/jp983204z
    [30] Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy[J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780. doi: 10.1073/pnas.90.5.1776
    [31] Imai T, Sugita Y. Dynamic correlation between pressure-induced protein structural transition and water penetration[J]. J Phys Chem B, 2010, 114(6): 2281-2286. doi: 10.1021/jp909701j
    [32] Collins M D, Hummer G, Quillin M L, et al. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation[J]. Proc Natl Acad Sci, 2005, 102(46): 16668-16671. doi: 10.1073/pnas.0508224102
    [33] Hédoux A, Guinet Y, Paccou L. Analysis of the mechanism of lysozyme pressure denaturation from Raman spectroscopy investigations, and comparison with thermal denaturation[J]. J Phys Chem B, 2011, 115(20): 6740-6748. doi: 10.1021/jp2014836
    [34] Grigera J R, McCarthy A N. The behavior of the hydrophobic effect under pressure and protein denaturation[J]. Biophys J, 2010, 98(8): 1626-1631. doi: 10.1016/j.bpj.2009.12.4298
    [35] Ando N, Barstow B, Baase W A, et al. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation[J]. Biochemistry, 2008, 47(42): 11097-11109. doi: 10.1021/bi801287m
    [36] Akasaka K, Li H, Yamada H, et al. Pressure response of protein backbone structure: Pressure-induced amide 15N chemical shifts in BPTI[J]. Protein Sci, 1999, 8(10): 1946-1953. doi: 10.1110/ps.8.10.1946
    [37] Girard E, Marchal S, Perez J, et al. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure[J]. Biophys J, 2010, 98(10): 2365-2373. doi: 10.1016/j.bpj.2010.01.058
    [38] Le Tilly V, Sire O, Alpert B, et al. An infrared study of 2H-bond variation in myoglobin revealed by high pressure[J]. Eur J Biochem, 1992, 205(3): 1061-1065. doi: 10.1111/j.1432-1033.1992.tb16874.x
    [39] Kangur L, Timpmann K, Freiberg A. Stability of integral membrane proteins under high hydrostatic pressure: The LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria[J]. J Phys Chem B, 2008, 112(26): 7948-7955. doi: 10.1021/jp801943w
    [40] Hummer G, Garde S, García A E, et al. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins[J]. Proc Natl Acad Sci, 1998, 95(4): 1552-1555. doi: 10.1073/pnas.95.4.1552
    [41] Hemley R J. Effects of high pressure on molecules[J]. Annu Rev Phys Chem, 2000, 51: 763-800. doi: 10.1146/annurev.physchem.51.1.763
    [42] Chen W, Heymann G, Kursula P, et al. Effects of gigapascal level pressure on protein structure and function[J]. J Phys Chem B, 2012, 116(3): 1100-1110. doi: 10.1021/jp207864c
    [43] Subirade M, Loupil F, Allain A, et al. Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by Fourier transform infrared spectroscopy[J]. Int Dairy J, 1998, 8(2): 135-140. doi: 10.1016/S0958-6946(98)00034-X
    [44] Ngarize S, Herman H, Adams A, et al. Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated β-lactoglobulin and ovalbumin proteins using fourier transform raman spectroscopy and self-deconvolution[J]. J Agric Food Chem, 2004, 52(21): 6470-6477. doi: 10.1021/jf030649y
    [45] Rouget J B, Schroer M A, Jeworrek C, et al. Unique features of the folding landscape of a repeat protein revealed by pressure perturbation[J]. Biophys J, 2010, 98(11): 2712-2721. doi: 10.1016/j.bpj.2010.02.044
    [46] Takeda N, Kato M, Taniguchi Y. Pressure-and thermally-induced reversible changes in the secondary structure of ribonuclease: A studied by FT-IR spectroscopy[J]. Biochemistry, 1995, 34(17): 5980-5987. doi: 10.1021/bi00017a027
    [47] 阎隆飞, 孙之荣.蛋白质分子结构[M].北京: 清华大学出版社, 1999: 334.

    Yan L F, Sun Z R. Structure of Proteins[M]. Beijing: Tsinghua University Press, 1999: 334. (in Chinese)
    [48] Knorr D, Heinz V, Buckow R. High pressure application for food biopolymers[J]. Biochim Biophys Acta, 2006, 1764(3): 619-631. doi: 10.1016/j.bbapap.2006.01.017
    [49] Tschirret-Guth R A, Hoa G H B, de Montellano P R O. Pressure-induced deformation of the cytochrome P450cam active site[J]. J Am Chem Soc, 1998, 120(15): 3590-3596. doi: 10.1021/ja973909z
    [50] Tschirret-Guth R A, Koo L S, Hoa G H, et al. Reversible pressure deformation of a thermophilic cytochrome P450 enzyme(CYP119)and its active-site mutants[J]. J Am Chem Soc, 2001, 123(15): 3412-3417. doi: 10.1021/ja003947+
    [51] Li H, Yamada H, Akasaka K. Effect of pressure on the tertiary structure and dynamics of folded basic pancreatic trypsin inhibitor[J]. Biophys J, 1999, 77(5): 2801-2812. doi: 10.1016/S0006-3495(99)77112-2
    [52] Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy[J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780. doi: 10.1073/pnas.90.5.1776
    [53] King L, Weber G. Conformational drift of dissociated lactate dehydrogenases[J]. Biochemistry, 1986, 25(12): 3632-3637. doi: 10.1021/bi00360a023
    [54] Silva J L, Miles E W, Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase[J]. Biochemistry, 1986, 25(19): 5780-5786. doi: 10.1021/bi00367a065
    [55] Ruan K, Weber G. Dissociation of yeast hexokinase by hydrostatic pressure[J]. Biochemistry, 1988, 27(9): 3295-3301. doi: 10.1021/bi00409a026
    [56] Panda M, Ybarra J, Horowitz P M. High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES[J]. J Biol Chem, 2001, 276(9): 6253-6259. doi: 10.1074/jbc.M009530200
    [57] Paladini A A Jr, Weber G. Pressure-induced reversible dissociation of enolase[J]. Biochemistry, 1981, 20(9): 2587-2593. doi: 10.1021/bi00512a034
    [58] Royer C A, Weber G, Daly T J, et al. Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure[J]. Biochemistry, 1986, 25(25): 8308-8315. doi: 10.1021/bi00373a027
    [59] Rietveld A W, Ferreira S T. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: Persistent heterogeneity of a protein dimer[J]. Biochemistry, 1996, 35(24): 7743-7751. doi: 10.1021/bi952118b
    [60] Ruan K, Weber G. Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase[J]. Biochemistry, 1989, 28(5): 2144-2153. doi: 10.1021/bi00431a028
    [61] Peng X, Jonas J, Silva J L. High-pressure NMR study of the dissociation of Arc repressor[J]. Biochemistry, 1994, 33(27): 8323-8329. doi: 10.1021/bi00193a020
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  7231
  • HTML全文浏览量:  2606
  • PDF下载量:  297
出版历程
  • 收稿日期:  2012-06-16
  • 修回日期:  2012-08-24

目录

    /

    返回文章
    返回