TNT后燃反应的水下爆炸实验研究与数值模拟

曹威 何中其 陈网桦

曹威, 何中其, 陈网桦. TNT后燃反应的水下爆炸实验研究与数值模拟[J]. 高压物理学报, 2014, 28(4): 443-449. doi: 10.11858/gywlxb.2014.04.009
引用本文: 曹威, 何中其, 陈网桦. TNT后燃反应的水下爆炸实验研究与数值模拟[J]. 高压物理学报, 2014, 28(4): 443-449. doi: 10.11858/gywlxb.2014.04.009
CAO Wei, HE Zhong-Qi, CHEN Wang-Hua. Experimental Research and Numerical Simulation of Afterburning Reaction of TNT Explosive by Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 443-449. doi: 10.11858/gywlxb.2014.04.009
Citation: CAO Wei, HE Zhong-Qi, CHEN Wang-Hua. Experimental Research and Numerical Simulation of Afterburning Reaction of TNT Explosive by Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 443-449. doi: 10.11858/gywlxb.2014.04.009

TNT后燃反应的水下爆炸实验研究与数值模拟

doi: 10.11858/gywlxb.2014.04.009
基金项目: 国防科技工业基础产品创新计划火炸药科研专项
详细信息
    作者简介:

    曹威(1988-), 男, 博士研究生, 主要从事爆炸与安全防护研究.E-mail:weicao668@qq.com

    通讯作者:

    何中其(1978-), 男, 讲师, 主要从事爆炸与安全防护研究.E-mail:hzq555@163.com

  • 中图分类号: O383;O389

Experimental Research and Numerical Simulation of Afterburning Reaction of TNT Explosive by Underwater Explosion

  • 摘要: 为了研究TNT炸药的后燃反应,采用水下爆炸实验方法和一种增强炸药后燃反应的实验装置,对TNT炸药的能量输出结构进行了研究,计算得到了不同气体氛围下的后燃反应能量。采用Miller能量释放模型,对后燃反应实验结果进行了数值模拟。结果表明:在实验装置中充入空气或氧气,可明显增强TNT炸药的后燃反应能量输出,实测的后燃反应能量随着氧含量的增加而增大,在实验研究范围内后燃反应能量的最大值达到4.90 kJ/g,但并没有达到后燃反应能量的理论最大值;冲击波压力时程曲线的数值模拟结果与实验结果基本一致,证明了Miller能量释放模型的可行性。

     

  • 图  实验装置示意图

    Figure  1.  Sketch of the experimental device

    图  实验布置

    Figure  2.  Experimental layout

    图  冲击波压力时程曲线

    Figure  3.  Shock wave pressure histories

    图  压力和冲量时程曲线的数值模拟结果与实验结果的对比

    Figure  4.  Comparison of pressure and impulse histories from numerical simulation with experimental data

    表  1  水下爆炸平行实验结果

    Table  1.   Parallel experiment results of the underwater explosion

    Experimental No. pm/(MPa) θ/(μs) M/(kPa2·s) tb/(ms)
    1 4.65 26.92 804 146.78
    2 4.72 26.98 823 147.65
    下载: 导出CSV

    表  2  水下爆炸能量

    Table  2.   Underwater explosion energy

    Filling gas Pressure/(MPa) es/(kJ/g) eb/(kJ/g) et/(kJ/g)
    Air 0.1 0.19 1.54 1.86
    Air 0.6 0.22 2.24 2.66
    Air 4.6 0.56 5.09 6.30
    N2 0.6 0.21 1.81 2.17
    N2 4.6 0.28 3.32 3.87
    O2 0.6 0.30 3.27 3.89
    O2 4.6 0.68 7.23 8.77
    下载: 导出CSV

    表  3  后燃反应能量

    Table  3.   Afterburning reaction energy

    Filling gas Pressure/(MPa) ea, exp/(kJ/g) ea, theor/(kJ/g) Filling gas Pressure/(MPa) ea, exp/(kJ/g) ea, theor/(kJ/g)
    Air 0.6 0.49 1.49 O2 0.6 1.72 3.78
    Air 4.6 2.43 5.54 O2 4.6 4.90 10.40
    下载: 导出CSV
  • [1] Ornellas D L. Calorimetric determinations of the heat and products of detonation for explosives: October 1961 to April 1982, UCRL-52821[R]. Livermore, USA: Lawrence Livermore National Laboratory, 1982.
    [2] Cooper P W. Explosives Engineering[M]. New York, USA: Wiley-VCH, 1996: 132-133.
    [3] Needham C E. Blast Waves[M]. Heidelberg, Germany: Springer-Verlag, 2010: 303-312.
    [4] Wolański P, Gut Z, Trzciński W A, et al. Visualization of turbulent combustion of TNT detonation products in a steel vessel[J]. Shock Waves, 2000, 10(2): 127-136.
    [5] Kuhl A L, Reichenbach H. Combustion effects in confined explosions[J]. Proc Combust Inst, 2009, 32(2): 2291-2298. doi: 10.1016/j.proci.2008.05.001
    [6] Kuhl A L, Bell J B, Beckner V E, et al. Gasdynamic model of turbulent combustion in TNT explosions[J]. Proc Combust Inst, 2011, 33(2): 2177-2185. doi: 10.1016/j.proci.2010.07.085
    [7] 孙华, 郭志军.高能聚黑类传爆药在水中兵器中应用研究[J].装备指挥技术学院学报, 2010, 21(3): 111-113.

    Sun H, Guo Z J. Study on the application of high energy hexogen booster in undersea weapons[J]. Journal of the Academy of Equipment Command and Technology, 2010, 21(3): 111-113. (in Chinese)
    [8] Kiciński W, Trzciński W A. Calorimetry studies of explosion heat of non-ideal explosives[J]. J Therm Anal Calorimetry, 2009, 96(2): 623-630. doi: 10.1007/s10973-008-9100-5
    [9] Bjarnholt G, Holmberg R. Explosive expansion waves in underwater detonation[C]//Proceedings of the Sixth International Symposium on Detonation. San Diego, USA, 1976: 540-550.
    [10] Cole R H. Underwater Explosions[M]. Princeton, USA: Princeton University Press, 1948.
    [11] 丁长兴, 崔应焆.用最小二乘法求气泡能的固有常数——兼议水下测试炸药能的精确计算[J].爆破器材, 1994(3): 1-7.

    Ding C X, Cui Y J. Determination of intrinsic constants of bubble energy with least square method: Accurate calculations of explosive energy measured underwater[J]. Explosive Materials, 1994(3): 1-7. (in Chinese)
    [12] 史锐, 徐更光, 刘德润, 等.炸药爆炸能量的水中测试与分析[J].火炸药学报, 2008, 31(4): 1-5.

    Shi R, Xu G G, Liu D R, et al. Underwater test and analysis for explosion energy of explosives[J]. Chinese Journal of Explosives & Propellants, 2008, 31(4): 1-5. (in Chinese)
    [13] 孙锦山, 朱建士.理论爆轰物理[M].北京: 国防工业出版社, 1995: 360-368.

    Sun J S, Zhu J S. Theory of Detonation Physics[M]. Beijing: National Defense Industry Press, 1995: 360-368. (in Chinese)
    [14] Lee E L, Horning H C, Kury J W. Adiabatic expansion of high explosive detonation products, UCRL-50422[R]. California, USA: University of California, 1968.
    [15] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[J]. MRS Proc, 1996, 418: 413-420.
    [16] 辛春亮, 徐更光, 刘科种, 等.含铝炸药Miller能量释放模型的应用[J].含能材料, 2008, 16(4): 436-440.

    Xin C L, Xu G G, Liu K Z, et al. Application of Miller energy release model for aluminized explosive[J]. Chinese Journal of Energetic Materials, 2008, 16(4): 436-440. (in Chinese)
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  7120
  • HTML全文浏览量:  2362
  • PDF下载量:  445
出版历程
  • 收稿日期:  2012-08-20
  • 修回日期:  2012-10-15

目录

    /

    返回文章
    返回