圆柱界面不稳定性的多组分气体动理学数值计算

邓新平 雷洁红 柏劲松 刘坤

邓新平, 雷洁红, 柏劲松, 刘坤. 圆柱界面不稳定性的多组分气体动理学数值计算[J]. 高压物理学报, 2014, 28(4): 407-415. doi: 10.11858/gywlxb.2014.04.004
引用本文: 邓新平, 雷洁红, 柏劲松, 刘坤. 圆柱界面不稳定性的多组分气体动理学数值计算[J]. 高压物理学报, 2014, 28(4): 407-415. doi: 10.11858/gywlxb.2014.04.004
DENG Xin-Ping, LEI Jie-Hong, BAI Jin-Song, LIU Kun. Numerical Simulation of Cylindrical Interface Instability by Using Multicomponent Gas Kinetic Scheme[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 407-415. doi: 10.11858/gywlxb.2014.04.004
Citation: DENG Xin-Ping, LEI Jie-Hong, BAI Jin-Song, LIU Kun. Numerical Simulation of Cylindrical Interface Instability by Using Multicomponent Gas Kinetic Scheme[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 407-415. doi: 10.11858/gywlxb.2014.04.004

圆柱界面不稳定性的多组分气体动理学数值计算

doi: 10.11858/gywlxb.2014.04.004
基金项目: 国家自然科学基金(11372294)
详细信息
    作者简介:

    邓新平(1990-), 男, 硕士研究生, 主要从事计算流体力学研究.E-mail:2007dxp@163.com

    通讯作者:

    柏劲松(1968-), 男, 博士, 研究员, 主要从事计算流体力学研究.E-mail:bjsong@foxmail.com

  • 中图分类号: O347;O354

Numerical Simulation of Cylindrical Interface Instability by Using Multicomponent Gas Kinetic Scheme

  • 摘要: 在假定单元内各组分同温同速的条件下,采用气体动理学格式(Gas-Kinetic Scheme,GKS)对空气/He和空气/R22圆柱界面不稳定性进行了数值计算,得到不同时刻的密度分布以及界面上特征位置的位移历史和平均速度。当激波穿过界面后,界面上特征位置的位移随时间逐渐增大,特征位置的平均速度与前人的实验结果和数值模拟结果吻合很好。对比结果表明,从微观气体运动角度出发的GKS方法对于界面不稳定性问题具有良好的模拟能力。

     

  • 图  计算模型

    Figure  1.  Calculation model

    图  不同时刻He的密度分布

    Figure  2.  Density distribution of helium at different time

    图  空气/He界面的特征位置

    Figure  3.  Characteristic points at the air/He interface

    图  空气/He界面特征位置的位移历史

    Figure  4.  Displacement history of the characteristic points at the air/He interface

    图  不同时刻R22的密度分布

    Figure  5.  Density distribution of R22 at different time

    图  空气/R22界面特征位置

    Figure  6.  Characteristic points at the air/R22 interface

    图  空气/R22界面特征位置的位移历史

    Figure  7.  Displacement histories of the characteristic points at the air/R22 interface

    表  1  空气/He界面特征位置的运动速度

    Table  1.   Velocities of characteristic points at air/He interface

    Method vA/(m/s) vB/(m/s) vC/(m/s)
    GKS 178 144 224
    Experiment[14] 170 145 230
    Simulation[6] 178 146 227
    Simulation[7] 176 153 229
    下载: 导出CSV

    表  2  空气/R22界面特征位置的运动速度

    Table  2.   Velocities of characteristic points at air/R22 interface

    Method vA/(m/s) vB/(m/s)
    GKS 70 124
    Experiment[14] 73 78
    Simulation[6] 74 116
    下载: 导出CSV
  • [1] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Commun Pur Appl Math, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
    [2] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dyn, 1969, 4(5): 101-104. doi: 10.1007/BF01015969
    [3] Pilliod Jr J E, Puckett E G. Second-order accurate volume-of-fluid algorithms for tracking material interfaces[J]. J Comput Phys, 2004, 199(2): 465-502. doi: 10.1016/j.jcp.2003.12.023
    [4] Fedkiw R P, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost fluid method)[J]. J Comput Phys, 1999, 152(2): 457-492. doi: 10.1006/jcph.1999.6236
    [5] Holmes R L, Grove J W, Sharp D H. Numerical investigation of Richtmyer-Meshkov instability using front tracking[J]. J Fluid Mech, 1995, 301: 51-64. doi: 10.1017/S002211209500379X
    [6] Quirk J J, Karni S. On the dynamics of a shock-bubble interaction[J]. J Fluid Mech, 1996, 318: 129-163. doi: 10.1017/S0022112096007069
    [7] Marquina A, Mulet P. A flux-split algorithm applied to conservative models for multicomponent compressible flows[J]. J Comput Phys, 2003, 185(1): 120-138. doi: 10.1016/S0021-9991(02)00050-5
    [8] 柏劲松, 王涛, 邹立勇, 等.可压缩多介质粘性流体和湍流的大涡模拟[J].爆炸与冲击, 2010, 30(3): 262-268. http://www.cqvip.com/Main/Detail.aspx?id=34539420

    Bai J S, Wang T, Zou L Y, et al. Large eddy simulation for the multi-viscosity-fluid and turbulence[J]. Explosion and Shock Waves, 2010, 30(3): 262-268. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=34539420
    [9] Anderson R W, Elliott N S, Pember R B. An arbitrary Lagrangian-Eulerian method with adaptive mesh refinement for the solution of the Euler equations[J]. J Comput Phys, 2004, 199(2): 598-617. doi: 10.1016/j.jcp.2004.02.021
    [10] Xu K. BGK-based scheme for multicomponent flow calculations[J]. J Comput Phys, 1997, 134(1): 122-133. doi: 10.1006/jcph.1997.5677
    [11] Lian Y S, Xu K. A gas-kinetic scheme for multimaterial flows and its application in chemical reactions[J]. J Comput Phys, 2000, 163(2): 349-375. doi: 10.1006/jcph.2000.6571
    [12] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and neutral one-component systems[J]. Phy Rev, 1954, 94: 511-525. doi: 10.1103/PhysRev.94.511
    [13] 李启兵, 徐昆.气体动理学格式研究进展[J].力学进展, 2012, 42(5): 522-537. http://d.wanfangdata.com.cn/Periodical/lxjz201205002

    Li Q B, Xu K. Progress in gas-kinetic scheme[J]. Advances in Mechanics, 2012, 42(5): 522-537. (in Chinese) http://d.wanfangdata.com.cn/Periodical/lxjz201205002
    [14] Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. J Fluid Mech, 1987, 181: 41-76. doi: 10.1017/S0022112087002003
    [15] Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J]. J Comput Phys, 2001, 171(1): 289-335. doi: 10.1006/jcph.2001.6790
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  6998
  • HTML全文浏览量:  2140
  • PDF下载量:  204
出版历程
  • 收稿日期:  2013-09-17
  • 修回日期:  2013-12-13

目录

    /

    返回文章
    返回