快速压致凝固法制备块体亚稳材料的研究进展

刘秀茹 王明友 张豆豆 张晨然 何竹 陈丽英 沈如 洪时明

刘秀茹, 王明友, 张豆豆, 张晨然, 何竹, 陈丽英, 沈如, 洪时明. 快速压致凝固法制备块体亚稳材料的研究进展[J]. 高压物理学报, 2014, 28(4): 385-393. doi: 10.11858/gywlxb.2014.04.001
引用本文: 刘秀茹, 王明友, 张豆豆, 张晨然, 何竹, 陈丽英, 沈如, 洪时明. 快速压致凝固法制备块体亚稳材料的研究进展[J]. 高压物理学报, 2014, 28(4): 385-393. doi: 10.11858/gywlxb.2014.04.001
LIU Xiu-Ru, WANG Ming-You, ZHANG Dou-Dou, ZHANG Chen-Ran, HE Zhu, CHEN Li-Ying, SHEN Ru, HONG Shi-Ming. Progress in Preparation of Bulk Metastable Materials by Rapid Compression-Induced Solidification[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 385-393. doi: 10.11858/gywlxb.2014.04.001
Citation: LIU Xiu-Ru, WANG Ming-You, ZHANG Dou-Dou, ZHANG Chen-Ran, HE Zhu, CHEN Li-Ying, SHEN Ru, HONG Shi-Ming. Progress in Preparation of Bulk Metastable Materials by Rapid Compression-Induced Solidification[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 385-393. doi: 10.11858/gywlxb.2014.04.001

快速压致凝固法制备块体亚稳材料的研究进展

doi: 10.11858/gywlxb.2014.04.001
基金项目: 国家自然科学基金(11004163, 10774123);中央高校基础科研业务费(SWJTU12CX083,2682014ZT31)
详细信息
    作者简介:

    刘秀茹(1981-), 女, 博士, 副教授, 主要从事高压下亚稳材料的制备及物性研究.E-mail:xrliu@swjtu.edu.cn

    通讯作者:

    洪时明(1947-), 男, 博士, 教授, 主要从事高压物理及超硬材料研究.E-mail:smhong2@163.com

  • 中图分类号: O521.3;O521.2

Progress in Preparation of Bulk Metastable Materials by Rapid Compression-Induced Solidification

  • 摘要: 综述了快速增压使熔体凝固以获取非晶等亚稳相的方法和研究进展。介绍了自行研制的快速增压装置,展示了制备单质硫的大块非晶材料、单质硒的块体密实纳米材料、两种镧系基合金玻璃的块体材料,以及聚对苯二甲酸乙二醇酯(PET)、聚醚醚酮(PEEK)、等规聚丙烯(iPP)大块高分子亚稳材料的实验结果,证明了快速压致凝固法是制备块体亚稳材料的一种普遍可行的方法。最近的实验结果表明:快速压致凝固法获得的块体亚稳材料尺寸不受热传导率的限制;在快速压致凝固过程中,存在形成亚稳相的临界压力和临界增压速率两个限制条件。

     

  • 图  制取非晶材料的几种基本途径示意图

    Figure  1.  Schematic of several preparation methods of amorphous materials

    图  快速增压装置示意图[18]

    Figure  2.  Schematic of the rapid compression apparatus[18]

    图  典型的压力信号[18]

    Figure  3.  Typical pressure record[18]

    图  4(a)  活塞圆筒方式的样品组装

    Figure  4(a).  Sample assembly in the

    图  4(b)  平面对顶方式的样品组装

    Figure  4(b).  Sample assembly in the

    图  快速压致凝固法制备的大块非晶硫实物图(非晶硫显示出较高弹性)[36]

    Figure  5.  Pictures of bulk amorphous sulfur prepared by rapid compression (It shows the amorphous sulfur possesses good elasticity)[36]

    图  快速压致凝固法制备的纯非晶硫和摩尔分数为1%的碘掺杂非晶硫在常温常压下的一维WAXS谱(拍摄时间间隔为10 min)[41]

    Figure  6.  WAXS patterns of pure amorphous sulfur and amorphous sulfur with 1% (mole fraction) I2 additive prepared by rapid compression, which is taken at room temperature and atmosphere pressure with time interval of 10 min[41]

    图  急冷法和快速压致凝固法制备的块体PEEK的剖面XRD谱[33]

    Figure  7.  XRD patterns of PEEK samples prepared by rapid quenching and rapid compression taken along the longitudinal section[33]

    图  473 K下以不同增压速率将iPP熔体压至1.5 GPa后回收样品的XRD谱

    Figure  8.  XRD patterns of iPP samples compressed to 1.5 GPa from melt under different compression rates at 473 K

  • [1] Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869-870.
    [2] Turnbull D. Metastable structures in metallurgy[J]. Metall Trans A, 1981, 12(5): 695-708. doi: 10.1007/BF02648333
    [3] Mishima O, Calvert L D, Whalley E. 'Melting ice' Ⅰ at 77 K and 10 kbar: A new method of making amorphous solids[J]. Nature, 1984, 310: 393-395. doi: 10.1038/310393a0
    [4] Hemley R J, Jephcoat A P, Mao H K, et al. Pressure-induced amorphization of crystalline silica[J]. Nature, 1988, 334: 52-54. doi: 10.1038/334052a0
    [5] Hemley R J, Chen L C, Mao H K. New transformations between crystalline and amorphous ice[J]. Nature, 1989, 338: 638-640. doi: 10.1038/338638a0
    [6] Aasland S, McMillan P F. Density-driven liquid-liquid phase separation in the system Al2O3-Y2O3[J]. Nature, 1994, 369: 633-636. doi: 10.1038/369633a0
    [7] Zou G T, Liu Z X, Wang L Z, et al. Pressure-induced amorphization of crystalline Bi4Ge3O12[J]. Phys Lett A, 1991, 156(7/8): 450-454.
    [8] 王文魁.亚稳相的高压暴露[J].高压物理学报, 1989, 3(4): 257-268.

    Wang W K. Exposure of metastable phases by high pressure[J]. Chinese Journal of High Pressure Physics, 1989, 3(4): 257-268. (in Chinese)
    [9] 王文魁, 许应凡, 黄新明.高压下Pd40Ni40P20过冷熔体的成核及大块金属玻璃形成[J].中国科学A辑, 1992(12): 1305-1310.

    Wang W K, Xu Y F, Huang X M. Crystal nucleation and formation of bulk metallic glass in undercooled Pd40Ni40P20 melt under high pressure[J]. Science in China(Series A), 1992(12): 1305-1310. (in Chinese)
    [10] 秦志成, 张云, 张富祥, 等.高压淬火直接形成Pd-Si块状纳米晶合金[J].物理学报, 1995, 44(1): 105-108.

    Qin Z C, Zhang Y, Zhang F X, et al. Preparation of bulk Pd-Si nanocrystalline alloy by pressure-quenching from melt[J]. Acta Physica Sinica, 1995, 44(1): 105-108. (in Chinese)
    [11] Xu Y F, Huang X M, Wang W K. Preparation of bulk metallic glass Pd40Ni40P20 under high pressure[J]. Appl Phys Lett, 1990, 56(20): 1957-1958. doi: 10.1063/1.103227
    [12] Wang W H, Wang R J, Zhao D Q, et al. Microstructural transformation in a Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass under high pressure[J]. Phys Rev B, 2000, 62: 11292-11295. doi: 10.1103/PhysRevB.62.11292
    [13] Wang Z X, Li F Y, Pan M X, et al. Effects of high pressure on the nucleation of Cu60Zr20Hf10Ti10 bulk metallic glass[J]. J Alloy Compd, 2005, 388(2): 262-265. doi: 10.1016/j.jallcom.2004.07.025
    [14] Yu P, Bai H Y, Zhao J G, et al. Pressure effects on mechanical properties of bulk metallic glass[J]. Appl Phys Lett, 2007, 90(5): 051906. doi: 10.1063/1.2435977
    [15] Hirai H, Kondo K, Yoshizawa N, et al. Amorphous diamond from C60 fullerene[J]. Appl Phys Lett, 1994, 64(14): 1797-1799. doi: 10.1063/1.111811
    [16] Yang C, Liu R P, Zhan Z J, et al. Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching[J]. Appl Phys Lett, 2005, 87(5): 051904. doi: 10.1063/1.2005367
    [17] He D W, Zhang F X, Zhang M, et al. Quenching with rapid decompression: A new method for rapid solidification[J]. Appl Phys Lett, 1997, 71(26): 3811-3813. doi: 10.1063/1.120542
    [18] Hong S M, Chen L Y, Liu X R, et al. High pressure jump apparatus for measuring Grüneisen parameter of NaCl and studying metastable amorphous phase of poly(ethylene terephthalate)[J]. Rev Sci Instrum, 2005, 76(5): 053905. doi: 10.1063/1.1899443
    [19] Boehler R, Getting I C, Kennedy G C. Grüneisen parameter of NaCl at high compressions[J]. J Phys Chem Solids, 1977, 38(3): 233-236. doi: 10.1016/0022-3697(77)90095-6
    [20] Wu C H, Lin C F, Lo S L, et al. A review paper on the kinetic study of the pressure-jump method[J]. Proc Natl Sci Counc Repub China A, 1999, 23(4): 466-478.
    [21] Heremans K, Ceuterick F, Rijkenberg J. High pressure pressure-jump apparatus[J]. Rev Sci Instrum, 1980, 51(2): 252-253. doi: 10.1063/1.1136168
    [22] Quednau J, Schneider G M. A new high-pressure cell for differential pressure-jump experiments using optical detection[J]. Rev Sci Instrum, 1989, 60(12): 3685-3687. doi: 10.1063/1.1140475
    [23] Leonardo R D, Scopigno T, Ruocco G, et al. Spectroscopic cell for fast pressure jumps across the glass transition line[J]. Rev Sci Instrum, 2004, 75(8): 2631-2637. doi: 10.1063/1.1763253
    [24] Woenckhaus J, Köhling R, Winter R, et al. High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron X-ray scattering technique[J]. Rev Sci Instrum, 2000, 71(10): 3895-3899. doi: 10.1063/1.1290508
    [25] Font J, Torrent J, Rib M, et al. Pressure-jump-induced kinetics reveals a hydration dependent folding/unfolding mechanism of ribonuclease A[J]. Biophys J, 2006, 91: 2264-2274. doi: 10.1529/biophysj.106.082552
    [26] Dumont C, Emilsson T, Gruebele M. Reaching the protein folding speed limit with large, sub-microsecond pressure jumps[J]. Nat Methods, 2009, 6: 515-519. doi: 10.1038/nmeth.1336
    [27] Heuert U, Krumova M, Hempel G, et al. NMR probe for pressure-jump experiments up to 250 bars and 3 ms jump time[J]. Rev Sci Instrum, 2010, 81(10): 105102. doi: 10.1063/1.3481164
    [28] Brooks N J, Gauthe B L L E, Terrill N J, et al. Automated high pressure cell for pressure jump X-ray diffraction[J]. Rev Sci Instrum, 2010, 81(6): 064103. doi: 10.1063/1.3449332
    [29] 陈丽英.快速大幅度增压法测量NaCl的Grüneisen参数[D].成都: 西南交通大学, 2006: 11-23.

    Chen L Y. Measuring Grüneisen parameter of NaCl by double-quick and larger range compression[D]. Chengdu: Southwest Jiaotong University, 2006: 11-23. (in Chinese)
    [30] 刘秀茹.快速增压法制备大块金属玻璃及金属玻璃的高压相变研究[D].成都: 西南交通大学, 2007: 9-109.

    Liu X R. Production of bulk metallic glass by rapid compression and phase transition under high pressure[D]. Chengdu: Southwest Jiaotong University, 2007: 9-109. (in Chinese)
    [31] Hong S M, Liu X R, Su L, et al. Rapid compression induced solidification of two amorphous phases of poly(ethylene terephthalate)[J]. J Phys D, 2006, 39(10): 3684-3688.
    [32] Li L B, Hong S M, Huang R. Effect of pressure on the crystallization behaviour of polyethylene terephthalate[J]. J Phys Condens Matter, 2002, 14(44): 11195-11198. doi: 10.1088/0953-8984/14/44/452
    [33] Yuan C S, Hong S M, Li X X, et al. Rapid compression preparation and characterization of oversized bulk amorphous polyether-ether-ketone[J]. J Phys D, 2011, 44(16): 165405. doi: 10.1088/0022-3727/44/16/165405
    [34] 袁朝圣.大块非晶Nd基合金及聚醚醚酮的快速增压制备与性能研究[D].成都: 西南交通大学, 2011: 31-84.

    Yuan C S. Praperations of bulk Nd-based metallic glass and bulk amorphous poly-ether-ether-ketone by rapid compression and their property studies[D]. Chengdu: Southwest Jiaotong University, 2011: 31-84. (in Chinese)
    [35] Wang M Y, Liu X R, Zhang C R, et al. Compression-rate dependence of solidified structure from melt in isotactic polypropylene[J]. J Phys D, 2013, 46(14): 145307. doi: 10.1088/0022-3727/46/14/145307
    [36] Jia R, Shao C G, Su L, et al. Rapid compression induced solidification of bulk amorphous sulfur[J]. J Phys D, 2007, 40(12): 3763-3766. doi: 10.1088/0022-3727/40/12/030
    [37] 贾茹.氩的高温高压布里渊散射研究及快速增压制备大块非晶硫[D].成都: 西南交通大学, 2008: 78-98.

    Jia R. Brillouin scattering study of argon at high pressures and high temperatures and rapid compression induced solidification of bulk amorphous sulfur[D]. Chengdu: Southwest Jiaotong University, 2008: 78-98. (in Chinese)
    [38] Yu P, Wang W H, Wang R J, et al. Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression[J]. Appl Phys Lett, 2009, 94(1): 011910. doi: 10.1063/1.3064125
    [39] Shao C G, An H N, Wang X, et al. Deformation-induced linear chain-ring transition and crystallization of living polymer sulfur[J]. Macromolecules, 2007, 40(26): 9475-9481. doi: 10.1021/ma071803a
    [40] 邵春光.原位X射线检测聚合物(非晶硫、sPP)拉伸过程中的结构变化与力学性能关系[D].成都: 西南交通大学, 2009: 56-75.

    Shao C G. In situ X-ray diffraction study of the relationship between microstructure and mechanical properties of amorphous sulfur and sPP[D]. Chengdu: Southwest Jiaotong University, 2009: 56-75. (in Chinese)
    [41] Lin S X, Liu X R, Shao C G, et al. Effect of iodine additive on thermostability of bulk amorphous sulfur prepared by rapid compression[J]. Chin Phys Lett, 2011, 28(8): 086102. doi: 10.1088/0256-307X/28/8/086102
    [42] 林胜雄.快压凝固法制备大块掺杂非晶硫及其热稳定性研究[D].成都: 西南交通大学, 2008: 29-43.

    Lin S X. Preparation of thermally stable bulk amorphous sulfur with additive by rapid compression[D]. Chengdu: Southwest Jiaotong University, 2008: 29-43. (in Chinese)
    [43] Liu X R, Hong S M, Lu S J, et al. Preparation of La68Al10Cu20Co2 bulk metallic glass by rapid compression[J]. Appl Phys Lett, 2007, 91(8): 081910. doi: 10.1063/1.2773751
    [44] Yuan C S, Liu X R, Shen R, et al. Preparation of thermo-stable bulk metallic glass of Nd60Cu20Ni10Al10 by rapid compression[J]. Chin Phys Lett, 2010, 27(9): 096202. doi: 10.1088/0256-307X/27/9/096202
    [45] Hu Y, Su L, Liu X R, et al. Preparation of high-density nanocrystalline bulk selenium by rapid compressing of melt[J]. Chin Phys Lett, 2010, 27(3): 038101. doi: 10.1088/0256-307X/27/3/038101
    [46] 胡云. Bridgman对顶砧的加压性能及快压制备高密度纳米硒块体材料的研究[D].成都: 西南交通大学, 2010: 48-64.

    Hu Y. The features of Bridgman anvil in application of high pressure and praperation of high-density nanocrystalline bulk senenium by rapid compression[D]. Chengdu: Southwest Jiaotong University, 2010: 48-64. (in Chinese)
    [47] Evans W J, Yoo C S, Lee G W, et al. Dynamic diamond anvil cell(dDAC): A novel device for studying the dynamic-pressure properties of materials[J]. Rev Sci Instrum, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [48] Chen J Y, Yoo C S. Formation and phase transitions of methane hydrates under dynamic loadings: Compression rate dependent kinetics[J]. J Chem Phys, 2012, 136(11): 114513. doi: 10.1063/1.3695212
  • 加载中
图(9)
计量
  • 文章访问数:  6767
  • HTML全文浏览量:  1969
  • PDF下载量:  356
出版历程
  • 收稿日期:  2012-06-28
  • 修回日期:  2012-09-20

目录

    /

    返回文章
    返回