高压过冷池沸腾换热机理的研究

肖波齐 蒋国平 范金土 陈玲霞

肖波齐, 蒋国平, 范金土, 陈玲霞. 高压过冷池沸腾换热机理的研究[J]. 高压物理学报, 2014, 28(2): 209-214. doi: 10.11858/gywlxb.2014.02.012
引用本文: 肖波齐, 蒋国平, 范金土, 陈玲霞. 高压过冷池沸腾换热机理的研究[J]. 高压物理学报, 2014, 28(2): 209-214. doi: 10.11858/gywlxb.2014.02.012
XIAO Bo-Qi, JIANG Guo-Ping, FAN Jin-Tu, CHEN Ling-Xia. Study on Heat Transfer Mechanism of Subcooled Pool Boiling under High Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 209-214. doi: 10.11858/gywlxb.2014.02.012
Citation: XIAO Bo-Qi, JIANG Guo-Ping, FAN Jin-Tu, CHEN Ling-Xia. Study on Heat Transfer Mechanism of Subcooled Pool Boiling under High Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 209-214. doi: 10.11858/gywlxb.2014.02.012

高压过冷池沸腾换热机理的研究

doi: 10.11858/gywlxb.2014.02.012
基金项目: 国家自然科学基金(11102100);福建省自然科学基金(2012J01017);福建省省属高校科研专项基金(JK2011056)
详细信息
    作者简介:

    肖波齐(1980—), 男,博士,主要从事流体传热传质及纤维材料的输运特性研究.E-mail:Mr.BoQi-Xiao@connect.polyu.hk

  • 中图分类号: TB124

Study on Heat Transfer Mechanism of Subcooled Pool Boiling under High Pressure

  • 摘要: 目前还没有一种被广泛承认的理论能够解释高压过冷池沸腾换热,其机理尚不明确。为了揭示高压池内过冷核沸腾的物理传热机理,并获得气泡脱离频率与活化穴半径的函数关系,根据池内过冷核沸腾加热表面活化穴的分布,在统计方法的基础上,提出了高压池内过冷核沸腾的一个数学模型。从该模型中发现,池内过冷核沸腾热流密度是壁面过热度、液体过冷度、活化穴尺寸、流体的接触角以及流体物理特性的函数。对不同的过冷度,将模型预测的结果与实验数据进行了比较,两者吻合得极好, 从而证明了数学模型的可靠性。该解析模型更深刻地揭示了过冷池沸腾换热的物理机理,且没有增加新的经验常数。

     

  • 图  模型预测值与实验数据的比较

    Figure  1.  Comparison between model predictions and existing experimental data

  • [1] 黄卫星, 王冬琼, 帅剑云, 等.矩形微通道内流动沸腾压力降实验研究[J].四川大学学报(工程科学版), 2008, 40(3): 81-85. http://d.wanfangdata.com.cn/Periodical/scdxxb-gckx200803015

    Huang W X, Wan D Q, Shuai J Y, et al. Study on pressure drop of flow boiling in a rectangular microchannel[J]. Journal of Sichuan University(Engineering Science Edition), 2008, 40(3): 81-85. (in Chinese) http://d.wanfangdata.com.cn/Periodical/scdxxb-gckx200803015
    [2] Xiao B Q, Yu B M, Wang Z C, et al. A fractal model for heat transfer of nanofluids by convection in a pool[J]. Phys Lett A, 2009, 373(45): 4178-4181. doi: 10.1016/j.physleta.2009.09.020
    [3] Xiao B Q, Jiang G P, Chen L X. A fractal study for nucleate pool boiling heat transfer of nanofluids[J]. Sci China Ser G: Phys Mech Astron, 2010, 53(1): 30-37. doi: 10.1007/s11433-010-0114-1
    [4] 李健, 荣吉利.近壁面气泡运动特性的数值计算[J].高压物理学报, 2010, 24(3): 168-174. http://www.cqvip.com/QK/96553X/201003/34752227.html

    Li J, Rong J L. Numerical study on bubble motion near the wall[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 168-174. (in Chinese) http://www.cqvip.com/QK/96553X/201003/34752227.html
    [5] Cooke D G, Kandlikar S. Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels[J]. ASME J Heat Transfer, 2011, 133(5): 052902. doi: 10.1115/1.4003046
    [6] Hutter C, Sefiane K, Karayiannis T G, et al. Nucleation site interaction between artificial cavities during nucleate pool boiling on silicon with integrated micro-heater and temperature micro-sensors[J]. Int J Heat Mass Transf, 2012, 55(11): 2769-2778. http://www.sciencedirect.com/science/article/pii/S0017931012000774
    [7] Chung H J, No H C. A nucleate boiling limitation model for the prediction of pool boiling CHF[J]. Int J Heat Mass Transf, 2007, 50(15): 2944-2951.
    [8] 黄超, 汪斌, 刘仓理, 等.柱形装药水中爆炸气泡的形态演变[J].高压物理学报, 2011, 25(3): 235-241. http://www.cqvip.com/QK/96553X/201103/38887925.html

    Huang C, Wang B, Liu C L, et al. On the shape evolution of underwater explosion bubbles by cylindrical charges[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 235-241. (in Chinese) http://www.cqvip.com/QK/96553X/201103/38887925.html
    [9] 牟金磊, 朱锡, 李海涛, 等.炸药水下爆炸能量输出特性试验研究[J].高压物理学报, 2010, 24(2): 88-92.

    Mu J L, Zhu X, Li H T, et al. Experimental research on underwater explosion energy output of explosive[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 88-92. (in Chinese)
    [10] Wang C H, Dhir V K. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface[J]. ASME J Heat Transfer, 1993, 115(3): 659-669. doi: 10.1115/1.2910737
    [11] Hsu Y Y. On the size range of active nucleation cavities on a heating surface[J]. ASME J Heat Transfer, 1962, 84(3): 207-215. doi: 10.1115/1.3684339
    [12] Han C Y, Griffith P. The mechanism of heat transfer in nucleate pool boiling-Part Ⅰ[J]. Int J Heat Mass Transfer, 1965, 8(6): 887-904. doi: 10.1016/0017-9310(65)90073-6
    [13] Han C Y, Griffith P. The mechanism of heat transfer in nucleate pool boiling-Part Ⅱ[J]. Int J Heat Mass Transfer, 1965, 8(6): 905-914. doi: 10.1016/0017-9310(65)90074-8
    [14] Forster D E, Greif F. Heat transfer to a boiling liquid-mechanism and correlation[J]. ASME J Heat Transfer, 1959, 81: 43-49. doi: 10.1115/1.4008129
    [15] Phan H T, Caney N, Marty P, et al. A model to predict the effect of contact angle on the bubble departure diameter during heterogeneous boiling[J]. Int Commun Heat Mass, 2010, 37(8): 964-969. doi: 10.1016/j.icheatmasstransfer.2010.06.024
    [16] Fritz W. Maximum volume of vapor bubbles[J]. Physik Zeitschr, 1935, 36(11): 379-384. http://www.researchgate.net/publication/246785705_maximum_volume_of_vapor_bubbles
    [17] van Stralen S J D, Sohal M S, Cole R, et al. Bubbles growth rates in pure and binary systems: Combined effect of relaxation and evaporation microlayers[J]. Int J Heat Mass Transfer, 1975, 18(3): 453-467. doi: 10.1016/0017-9310(75)90033-2
    [18] Petrovic S, Robinson T, Judd R L. Marangoni heat transfer in subcooled nucleate pool boiling[J]. Int J Heat Mass Transfer, 2004, 47(23): 5115-5128. doi: 10.1016/j.ijheatmasstransfer.2004.05.031
  • 加载中
图(1)
计量
  • 文章访问数:  6902
  • HTML全文浏览量:  2163
  • PDF下载量:  230
出版历程
  • 收稿日期:  2012-03-29
  • 修回日期:  2012-05-28

目录

    /

    返回文章
    返回