高压下金属间化合物CaAlSi的电子结构和晶格动力学性质

任晓光 崔雪菡 吴宝嘉 顾广瑞

任晓光, 崔雪菡, 吴宝嘉, 顾广瑞. 高压下金属间化合物CaAlSi的电子结构和晶格动力学性质[J]. 高压物理学报, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005
引用本文: 任晓光, 崔雪菡, 吴宝嘉, 顾广瑞. 高压下金属间化合物CaAlSi的电子结构和晶格动力学性质[J]. 高压物理学报, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005
REN Xiao-Guang, CUI Xue-Han, WU Bao-Jia, GU Guang-Rui. Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005
Citation: REN Xiao-Guang, CUI Xue-Han, WU Bao-Jia, GU Guang-Rui. Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005

高压下金属间化合物CaAlSi的电子结构和晶格动力学性质

doi: 10.11858/gywlxb.2014.02.005
基金项目: 国家自然科学基金(11164031,51272224,51362028);教育部留学归国人员科研启动基金(教外司留[2009]1341)
详细信息
    作者简介:

    任晓光(1986—),男,硕士,主要从事薄膜材料物理、第一性原理计算的研究.E-mail:xiaoguangren@163.com

    通讯作者:

    顾广瑞(1970—),男,博士,教授,主要从事薄膜材料物理、第一性原理计算的研究.E-mail: grgu@ybu.edu.cn

  • 中图分类号: O521.23

Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure

  • 摘要: 利用基于密度泛函理论的第一性原理方法, 研究了三元金属间化合物CaAlSi在高压下的电子性质和晶格振动性质。三元金属间化合物CaAlSi具有和MgB2类似的六角蜂巢状结构, Ca原子取代了Mg原子的位置, Al、Si原子无序地占据B原子的位子。通过对Ca三元金属间化合物能带和三维费米面的计算, 发现在压力的作用下CaAlSi费米面附近的能带发生了电子拓扑变化, 压强可以导致电子拓扑结构相变(ETTs)。通过晶格动力学的研究发现, 在压力的作用下, CaAlSi的光学支沿着A-L-H方向逐渐软化, 声学支逐渐变硬。说明此金属间化合物在压力的作用下,其结构不是很稳定, 随着压力的继续增大, 可能会有新的结构出现。

     

  • 图  CaAlSi在常压下的晶体结构图

    Figure  1.  Crystal structure of CaAlSi under normal pressure

    图  CaAlSi在零压下的态密度图

    Figure  2.  CaAlSi state density at zero pressure

    图  不同压力下CaAlSi的能带结构图

    Figure  3.  Energy band structures of CaAlSi at different pressures

    图  CaAlSi在0、3和5 GPa时Г点的能带放大图

    Figure  4.  Г point the band enlargement map at 0, 3, 5 GPa

    图  不同压力下的CaAlSi的三维费米面图

    Figure  5.  CaAlSi three-demensional Fermi maps at different pressures

    图  CaAlSi在布里渊区Г点处的能带与费米面处的能量差随压强变化关系

    Figure  6.  CaAlSi in the Brillouin zone Г point of the band and at the Fermi energy difference with the change of pressure

    图  CaAlSi在0、3和5 GPa时的声子谱

    Figure  7.  CaAlSi phonon spectra at 0, 3, 5 GPa

    表  1  不同压力下CaAlSi晶格常数

    Table  1.   CaAlSi lattice constant at different pressures

    p/(GPa) a/(nm) c/(nm)
    0 0.420 8 0.437 1
    3 0.416 4 0.423 6
    5 0.414 0 0.415 9
    下载: 导出CSV
  • [1] Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride[J]. Nature, 2001, 410(6824): 63-64. doi: 10.1038/35065039
    [2] Flleischer R, Dimiduk D, Lipsitt H. Intermetallic compounds for strong high temperature materials: Status and potential[J]. Ann Rev Mater Sci, 1989, 19(1): 231-263. doi: 10.1146/annurev.ms.19.080189.001311
    [3] Buschow K. Intermetallic compounds of rare-earth and 3d transition metals[J]. Reports on Progress in Physics, 1977, 40(10): 1179-1256. doi: 10.1088/0034-4885/40/10/002
    [4] 张永刚.金属间化合物结构材料[M].长沙: 国防科技出版社, 2002.

    Zhang Y G. Intermetallic Structural Materials[M]. Changsha: The National Defense Science and Technology Press, 2002. (in Chinese)
    [5] 师昌绪.高技术新材料的现状与展望[J].机械工程材料, 1994, 18(1): 3-6. http://www.cnki.com.cn/article/cjfdtotal-gxgc401.002.htm

    Shi C X. High technology of the new materials situation and expectation[J]. Mech Eng Mater, 1994, 18(1): 3-6. (in Chinese) http://www.cnki.com.cn/article/cjfdtotal-gxgc401.002.htm
    [6] Sanfilippo S, Elsinger M, Núez-Regueiro M, et al. Superconducting high pressure CaSi2 phase with Tc up to 14 K[J]. Phys Rev B, 2000, 61: R3800-R3803. doi: 10.1103/PhysRevB.61.R3800
    [7] Imai M, Nishida K, Kimura T, et al. Superconductivity of Ca(Al0.5, Si0.5)2, a ternary silicide with the AlB2-type structure[J]. Appl Phys Lett, 2002, 80(6): 1019-1021. doi: 10.1063/1.1448857
    [8] Weller T E, Ellerby M, Saxena S S, et al. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca[J]. Nature Phys, 2005, 1(1): 39-41. doi: 10.1038/nphys0010
    [9] Zhang J Y, Zhang L J, Cui T, et al. Phonon and elastic instabilities in rocksalt alkali hydrides under pressure: First-principles study[J]. Phys Rev B, 2007, 75: 104115. doi: 10.1103/PhysRevB.75.104115
    [10] Xie Y, John S T, Cui T, et al. Electronic and phonon instabilities in face-centered-cubic alkali metals under pressure studied usingab initio calculations[J]. Phys Rev B, 2007, 75: 064102. doi: 10.1103/PhysRevB.75.064102
    [11] Zhang L J, Wang Y C, Zhang X X, et al. High-pressure phase transitions of solid HF, HCl, and HBr: An ab initio evolutionary study[J]. Phys Rev B, 2010, 82: 014108. doi: 10.1103/PhysRevB.82.014108
    [12] Ma Y M, Tse J S, Klug D D. First-principles study of the mechanisms for the pressure-induced phase transitions in zinc-blende CuBr and CuI[J]. Phys Rev B 2004, 69: 064102.
    [13] Zhang L J, Xie Y, Cui T, et al. Pressure-induced enhancement of electron-phonon coupling in superconducting CaC6 from first principles[J]. Phys Rev B 2006, 74: 184519.
    [14] Li Y, Zhang L J, Cui T, et al. Phonon instabilities in rocksalt AgCl and AgBr under pressure studied within density functional theory[J]. Phys Rev B 2006, 74: 054102.
    [15] Yin M T, Cohen M L. Theory of static structural properties, crystal stability, and phase transformations: Application to Si and Ge[J]. Phys Rev B, 1982, 26: 5668-5687. doi: 10.1103/PhysRevB.26.5668
    [16] Kunc K, Martin R M. Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties[J]. Phys Rev Lett, 1982, 48(6): 406-409. doi: 10.1103/PhysRevLett.48.406
    [17] Frank W, Elsässer C, Fähnle M. Ab initio force-constant method for phonon dispersions in alkali metals[J]. Phys Rev Lett, 1995, 74(10): 1791-1794. doi: 10.1103/PhysRevLett.74.1791
    [18] Savrasov S Y. Linear-response theory and lattice dynamics: A muffin-tin-orbital approach[J]. Phys Rev B, 1996, 54(23): 16470-16486. doi: 10.1103/PhysRevB.54.16470
    [19] Giannozzi P, de Gironcoli S, Pavone P, et al. Ab initio calculation of phonon dispersions in semiconductors[J]. Phys Rev B, 1991, 43(9): 7231-7242. doi: 10.1103/PhysRevB.43.7231
    [20] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): B864-B871. doi: 10.1103/PhysRev.136.B864
    [21] Baroni S, Giannozzi P, Testa A. Green's-function approach to linear response in solids[J]. Phys Rev Lett, 1987, 58(18): 1861-1864. doi: 10.1103/PhysRevLett.58.1861
    [22] 杨宏顺, 余旻, 李世燕, 等.新型超导体MgB2的热电势和电阻率研究[J].物理学报, 2001, 50(6): 1197-1200. http://d.wanfangdata.com.cn/Periodical_wlxb200106037.aspx

    Yang H S, Yu M, Li S Y, et al. The study of thermoelectric potential and resistivity on the new superconductor MgB2[J]. Acta Physica Sinica, 2001, 50(6): 1197-1200. (in Chinese) http://d.wanfangdata.com.cn/Periodical_wlxb200106037.aspx
    [23] Imai M, Sato A, Aoyagi T, et al. Superconductivity in the AlB2-type ternary rare-earth silicide YbGa1.1Si0.9[J]. J Am Chem Soc, 2008, 130(10): 2886-2887. doi: 10.1021/ja077669r
    [24] Li Z Q, Tse J S. Phonon anomaly in high-pressure Zn[J]. Phys Rev Lett, 2000, 85(24): 5130-5133. doi: 10.1103/PhysRevLett.85.5130
    [25] Tamegai T, Uozato K, Kasahara S, et al. Comparative study of anisotropic superconductivity in CaAlSi and CaGaSi[J]. Physica C: Superconductivity, 2005, 426-431: 208-212. doi: 10.1016/j.physc.2005.01.020
    [26] 马荣, 黄桂琴, 刘楣.三元硅化物CaAlSi的结构和超导电性[J].物理学报, 2007, 56(8): 4960-4964. http://d.wanfangdata.com.cn/Periodical/wlxb200708098

    Ma R, Huang G Q, Liu M. Structure and supeiconductivity of three ternary silicide CaAlSi[J]. Acta Physica Sinica, 2007, 56(8): 4960-4964. (in Chinese) http://d.wanfangdata.com.cn/Periodical/wlxb200708098
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  7429
  • HTML全文浏览量:  2555
  • PDF下载量:  276
出版历程
  • 收稿日期:  2012-07-09
  • 修回日期:  2012-11-01

目录

    /

    返回文章
    返回