1.0 GPa下榴闪岩电导率的研究

李丹阳 王多君 郭颖星

李丹阳, 王多君, 郭颖星. 1.0 GPa下榴闪岩电导率的研究[J]. 高压物理学报, 2014, 28(2): 152-160. doi: 10.11858/gywlxb.2014.02.004
引用本文: 李丹阳, 王多君, 郭颖星. 1.0 GPa下榴闪岩电导率的研究[J]. 高压物理学报, 2014, 28(2): 152-160. doi: 10.11858/gywlxb.2014.02.004
LI Dan-Yang, WANG Duo-Jun, GUO Ying-Xing. Electrical Conductivity of Amphibole Eclogite at 1.0 GPa[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 152-160. doi: 10.11858/gywlxb.2014.02.004
Citation: LI Dan-Yang, WANG Duo-Jun, GUO Ying-Xing. Electrical Conductivity of Amphibole Eclogite at 1.0 GPa[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 152-160. doi: 10.11858/gywlxb.2014.02.004

1.0 GPa下榴闪岩电导率的研究

doi: 10.11858/gywlxb.2014.02.004
基金项目: 中国科学院、国家外专局创新团队国际合作伙伴计划(KZZD-EW-TZ-19);国家自然科学基金(41074063,41374095);中国科学院知识创新工程重点方向性项目(KZCX2-YW-QN608)
详细信息
    作者简介:

    李丹阳(1989—), 女,硕士研究生,主要从事高温高压矿物电学性质研究.E-mail:lidanyang126@126.com

    通讯作者:

    王多君(1974—), 男,教授,主要从事高温高压下物质电学性质研究.E-mail: duojunwang@hotmail.com

  • 中图分类号: O521.2

Electrical Conductivity of Amphibole Eclogite at 1.0 GPa

  • 摘要: 在1.0 GPa压力条件下,采用交流阻抗谱法在10-1~106 Hz频率范围内对陕西商南地区的榴闪岩样品进行了电阻抗测量。实验结果表明,榴闪岩的复阻抗对温度和频率表现出明显的依赖性。在给定温度下,复阻抗的模随频率的增大而减小,相角随频率的增大先减小后变大;在给定频率下,复阻抗的模随温度的升高而减小,相角随温度的升高而增大。榴闪岩电导率值的范围为10-6 ~1 S/m,并且电导率与温度之间满足Arrhenius关系式。低温区活化焓约为33~58 kJ/mol,高温区活化焓约为108~163 kJ/mol。榴闪岩的导电机制可能是Fe2+与Fe3+之间的电子跳跃。

     

  • 图  实验前、后的显微照片

    Figure  1.  Photomicrographs before and after experiment

    图  实验样品组装示意图

    Figure  2.  The sample assembly diagram for electrical conductivity measurements at high pressure

    图  样品电导率模值|Z|与频率f的关系图

    Figure  3.  The relationship between |Z| and f at different temperatures

    图  样品电导率相角Φ与频率f的关系图

    Figure  4.  The relationship between Φ and f at different temperatures

    图  样品的阻抗谱图

    Figure  5.  Complex impedance arcs of samples

    图  循环升、降温中lgσ和1/T的关系图

    Figure  6.  Logarithm of electrical conductivity versus reciprocal temperature during heating and cooling cycles

    图  实验前、后榴闪岩和蚀变榴闪岩中矿物的红外光谱图

    Figure  7.  FTIR spectra of minerals in amphibole retrograde amphibole eclogite before and after experiments

    图  本实验的电导率测量结果与前人工作的对比

    Figure  8.  Comparison of electrical conductivity results between various samples and this work

    表  1  实验前样品的组分(质量分数)

    Table  1.   Compositions of samples before experiment (Mass fraction) (%)

    Composition Amphibole eclogite Retrograde amphibole eclogite
    Bulk Hb Ab Grt Bulk Hb Ab
    SiO2 57.30 47.04 58.19 38.04 46.22 46.62 50.77
    Al2O3 9.99 9.16 26.46 21.41 7.52 10.35 32.12
    CaO 8.67 11.56 8.23 7.53 13.13 12.14 14.61
    MgO 7.44 10.52 0.02 1.72 13.06 11.53 0.01
    TiO2 0.65 0.19 0.02 0.11 3.15 0.38 0.03
    Fe2O3 1.90 ND ND ND 3.96 ND ND
    FeO 9.39 17.70 0.09 30.21 9.65 15.89 0.08
    K2O 0.20 0.23 0.06 0.01 0.28 0.39 0.03
    Na2O 1.74 1.13 6.86 0.02 1.14 0.98 3.38
    Cr2O3 ND 0.07 0.03 0.06 ND 0.07 0.03
    NiO ND 0.06 0.05 0.04 ND 0.02 0.04
    MnO 0.17 ND ND ND 0.27 ND ND
    P2O5 0.13 ND ND ND 0.06 ND ND
    LoI 1.84 ND ND ND 1.68 ND ND
    Total 99.42 97.66 100.01 99.15 100.12 98.37 101.1
    下载: 导出CSV

    表  2  实验后样品的组分(质量分数)

    Table  2.   Compositions of samples after experiment (Mass fraction) (%)

    Composition Amphibole eclogite Retrograde amphibole eclogite
    Hb Ab Grt Hb Ab
    SiO2 40.51 59.45 37.34 42.72 61.70
    Al2O3 18.13 26.12 20.58 12.65 24.43
    CaO 11.50 7.93 7.56 11.62 5.86
    MgO 6.15 0.01 1.34 9.36 0.01
    TiO2 0.54 0.02 0.13 0.65 0.02
    FeO 18.60 0.06 31.25 18.34 0.09
    K2O 0.65 0.04 0.02 0.67 0.08
    Na2O 1.87 7.14 0.10 2.00 8.19
    Cr2O3 0.04 0.01 0.01 0.05 0.02
    NiO 0.04 0.03 0.02 ND 0.03
    MnO 0.20 ND 1.92 0.42 0.02
    Total 98.23 100.81 100.27 98.48 100.45
    下载: 导出CSV

    表  3  样品电导率的Arrhenius关系式拟合参数

    Table  3.   Fitted parameters for electrical conductivity of samples with Arrhenius relation

    Sample No. T/(K) ΔH/(kJ/mol) lgσ0
    Amphibole eclogite J94 365~623 33±1 0.00±0.14
    627~760 108±7 6.40±0.53
    Retrograde amphibole
    eclogite
    J86 384~769 58±1 1.89±0.12
    820~959 163±10 8.53±0.58
    下载: 导出CSV
  • [1] Christensen N I, Mooney W D. Seismic velocity structure and composition of the continental crust: a global view[J]. J Geophys Res, 1995, 100(B6): 9761-9788. doi: 10.1029/95JB00259
    [2] 高平, 杨僻元, 李艳军.秦岭-大别山壳幔岩石高温高压下的电性特征[J].地质科学, 1998, 33(2): 195-203. http://qikan.cqvip.com/Qikan/Article/Detail?id=3006665

    Gao P, Yang P Y, Li Y J. Experimental study on the electric conductivity under high pressure and high temperature for the crust-mantle rocks in Qinling-Dabie mountain[J]. Chinese Journal of Geology, 1998, 33(2): 195-203. (in Chinese) http://qikan.cqvip.com/Qikan/Article/Detail?id=3006665
    [3] Schmidbauer E, Kunzmann T, Fehr T, et al. Electrical conductivity, thermopower and 57Fe Mössbauer spectroscopy of an Fe-rich amphibole, arfvedsonite[J]. Phys Chem Minerals, 1996, 23(2): 99-106. doi: 10.1007/BF00202305
    [4] Schmidbauer E, Kunzmann T, Fehr T, et al. Electrical resistivity and 57Fe Mössbauer spectra of Fe-bearing calcic amphiboles[J]. Phys Chem Minerals, 1996, 23(2): 99-106. doi: 10.1007/s002690050264
    [5] Wang D J, Guo Y X, Yu Y J, et al. Electrical conductivity of amphibole-bearing rocks: influence of dehydration[J]. Contrib Mineral Petrol, 2012, 164(1): 17-25. doi: 10.1007/s00410-012-0722-z
    [6] 于英杰, 王多君, 郭颖星, 等.高温高压下角闪片麻岩的电导率研究[J].地球物理学报, 2011, 54(3): 764-770. http://www.cqvip.com/Main/Detail.aspx?id=37777610

    Yu Y J, Wang D J, Guo Y X, et al. The electrical conductivity of amphibole-bearing gneiss at high temperature and high pressure[J]. Chinese Journal of Geophysics, 2011, 54(3): 764-770. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=37777610
    [7] Karoto S, Wang D J. Electrical conductivity of minerals and rocks[C]//Karoto S. Physics and Chemistry of the Deep Earth. New Jersey: Wiley-Blackwell, 2013: 145-181.
    [8] 安三元, 王珰荣, 苏春乾.陕西商南秦岭群闪岩系的原岩恢复与多期变质作用[J].中国区域地质, 1985, 13(3): 159-170. http://www.cnki.com.cn/article/cjfdtotal-zqyd198503015.htm

    An S Y, Wang D R, Su C Q. Protolith restoration and multiphase metamorphism of amphibolites system of Qinling Group in Shangnan of Shanxi[J]. Regional Geology China, 1985, 13(3): 159-170. (in Chinese) http://www.cnki.com.cn/article/cjfdtotal-zqyd198503015.htm
    [9] 刘在洋, 王多君, 李和平, 等.高温高压下蛇纹岩电导率的初步研究[J].高压物理学报, 2011, 25(2): 147-152. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201102010.htm

    Liu Z Y, Wang D J, Li H P, et al. A preliminary study on conductivity of serpentinite at high pressure and high temperature[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 147-152. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL201102010.htm
    [10] 胡海英, 李和平, 代立冬, 等.高温高压下钠长石的阻抗谱实验研究[J].高压物理学报, 2012, 26(4): 382-388. http://www.cqvip.com/QK/96553X/201204/43115586.html

    Hu H Y, Li H P, Dai L D, et al. Experimental study on impedance spectra of albite at high temperatures and high pressures[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 382-388. (in Chinese) http://www.cqvip.com/QK/96553X/201204/43115586.html
    [11] 单双明, 汪日平, 郭捷, 等. YJ-3000t型紧装式六面顶大腔体高温高压实验装置样品室的压力标定[J].高压物理学报, 2007, 21(4): 367-372. http://www.cnki.com.cn/Article/CJFDTotal-GYWL200704006.htm

    Shan S M, Wang R P, Guo J, et al. Pressure calibration for the sample cell of YJ-3000t multi-anvil press at high-temperature and high-pressure[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 367-372. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL200704006.htm
    [12] Macdonald J R, Johnson W B. Fundamentals of impedance spectroscopy[C]//Macdonald J R, Barsoukov E. Impedance Spectroscopy: Theory, Experiment, and Applications. New York: John Wiley & Sons, 1987: 1-26.
    [13] Roberts J J, Tyburczy J A. Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport[J]. Phys Chem Minerals, 1993, 20(1): 19-26. doi: 10.1007/BF00202246
    [14] Romano C, Poe B T, Kreidie N, et al. Electrical conductivities of pyrope-almandine garnets up to 19 GPa and 1 700 ℃[J]. Am Mineral, 2006, 91(8/9): 1371-1377. http://adsabs.harvard.edu/abs/2006AmMin..91.1371R
    [15] Hirsch L M, Shankland T J, Duba A G. Electrical conduction and polaron mobility in Fe-bearing olivine[J]. Geophys J Inter, 1993, 114(1): 36-44. http://gji.oxfordjournals.org/content/114/1/36.abstract
    [16] Bagdassarov N, Batalev V, Egorova V. State of lithosphere beneath Tien Shan from petrology and electrical conductivity of xenoliths[J]. J Geophys Res, 2011, 116(B1): B01202. doi: 10.1029/2009JB007125/full
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  7376
  • HTML全文浏览量:  2299
  • PDF下载量:  203
出版历程
  • 收稿日期:  2012-12-27
  • 修回日期:  2013-09-24

目录

    /

    返回文章
    返回