环氧丙烷蒸气-铝粉-空气杂混合物的爆炸特性研究

谭汝媚 张奇

谭汝媚, 张奇. 环氧丙烷蒸气-铝粉-空气杂混合物的爆炸特性研究[J]. 高压物理学报, 2014, 28(1): 48-54. doi: 10.11858/gywlxb.2014.01.008
引用本文: 谭汝媚, 张奇. 环氧丙烷蒸气-铝粉-空气杂混合物的爆炸特性研究[J]. 高压物理学报, 2014, 28(1): 48-54. doi: 10.11858/gywlxb.2014.01.008
TAN Ru-Mei, ZHANG Qi. Research on the Explosibility of Gaseous Epoxypropane-Aluminum Dust-Air Hybrid Mixtures[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 48-54. doi: 10.11858/gywlxb.2014.01.008
Citation: TAN Ru-Mei, ZHANG Qi. Research on the Explosibility of Gaseous Epoxypropane-Aluminum Dust-Air Hybrid Mixtures[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 48-54. doi: 10.11858/gywlxb.2014.01.008

环氧丙烷蒸气-铝粉-空气杂混合物的爆炸特性研究

doi: 10.11858/gywlxb.2014.01.008
基金项目: 国家自然科学基金(11372044)
详细信息
    作者简介:

    谭汝媚(1976-), 女, 博士研究生, 讲师, 主要从事事故演化动力学研究.E-mail:yiran76@163.com

    通讯作者:

    张奇(1956-), 男, 博士, 教授, 主要从事爆炸安全研究.E-mail:qzhang@bit.edu.cn

  • 中图分类号: O382.1; X932

Research on the Explosibility of Gaseous Epoxypropane-Aluminum Dust-Air Hybrid Mixtures

  • 摘要: 为了评估环氧丙烷蒸气-铝粉-空气杂混合物的爆炸危险性,在5 L圆柱形爆炸装置中分别对铝粉、环氧丙烷蒸气及铝粉与环氧丙烷蒸气共存条件下的杂混合物进行了爆炸浓度下限的实验研究。结果表明:环氧丙烷蒸气可使杂混合物的爆炸下限浓度降低;杂混合物的最大爆炸压力上升速率由于环氧丙烷蒸气的存在而增强;当铝粉浓度较低时,环氧丙烷蒸气的加入使最大爆炸压力明显增加,之后随着铝粉浓度的增加,最大爆炸压力反而减小。

     

  • 图  蒸气-粉尘爆炸实验装置

    Figure  1.  Explosive experimental devices of vapour-dust

    图  环氧丙烷蒸气浓度为零和1.4%时不同浓度铝粉的最大爆炸压力

    Figure  2.  Maximum overpressures as a function of the aluminum dust content at the volume fraction of gaseous epoxypropane of 0 or 1.4%

    图  环氧丙烷蒸气浓度为零和1.4%时不同浓度铝粉的最大爆炸压力上升速率

    Figure  3.  Maximum rates of pressure rise as a function of the aluminum dust content at the volume fraction of gaseous epoxypropane of 0 or 1.4%

    图  310 g/m3铝粉-空气混合物的爆炸压力曲线

    Figure  4.  Pressure evolution for 310 g/m3 aluminum dust-air hybrid mixture

    图  1.4%环氧丙烷-310 g/m3铝粉-空气混合物的爆炸压力曲线

    Figure  5.  Pressure evolution for the 1.4% gaseous epoxypropane-310 g/m3 aluminum dust-air hybrid mixture

    表  1  不同点火延迟时间下不同浓度铝粉-空气混合物的爆炸参数

    Table  1.   Explosion parameters of aluminium dust-air mixtures at different ignition delay time

    CAl/(g/m3) td/(ms) pmax/(MPa) (dp/dt)max/(MPa/s)
    500 60 0.851 47.8
    500 60 0.766 51.9
    500 60 0.817 62.8
    500 70 0.715 25.3
    500 70 0.670 36.0
    500 70 0.813 48.5
    500 50 0.772 50.3
    500 50 0.762 40.1
    500 50 0.758 57.6
    500 40 0.794 55.2
    500 40 0.722 39.4
    500 40 0.701 54.9
    310 80 0.434 7.5
    310 80 0.377 12.1
    310 80 0.484 8.5
    310 70 0.500 16.0
    310 70 0.528 15.5
    310 70 0.546 15.2
    310 60 0.670 22.5
    310 60 0.637 18.8
    310 60 0.694 24.0
    310 50 0.601 19.0
    310 50 0.511 18.3
    310 50 0.624 16.1
    200 60
    200 60
    200 60
    200 60 0.413 6.6
    200 60
    200 60 0.270 2.1
    200 60
    200 60
    200 60 0.382 3.4
    200 20
    200 20
    200 20
    200 20
    200 20
    200 20 0.607 17.7
    200 20
    200 20
    200 20 0.546 11.0
    200 20
    200 20
    200 20
    200 20
    200 20 0.570 18.6
    200 30
    200 30
    200 30
    200 30 0.605 12.3
    200 30 0.451 5.0
    200 30
    200 30
    200 30 0.432 21.4
    200 40
    200 40
    200 40
    200 40 0.444 6.8
    200 40
    200 40
    200 40
    200 40
    200 40
    200 40 0.590 8.9
    200 40
    200 40
    200 40
    200 40 0.486 5.9
    150 20
    150 20
    150 30
    150 30
    150 60
    150 60
    150 40
    150 40
    Note:“─” denotes that the mixture in the vessel was not initiated in the experiment.
    下载: 导出CSV

    表  2  环氧丙烷蒸气-空气混合物的爆炸参数

    Table  2.   Explosion parameters of gaseous epoxypropane-air mixtures

    φPO/(%) pmax/(MPa) (dp/dt)max/(MPa/s)
    2.8 0.320 13.20
    2.8 0.227 3.51
    2.8 0.234 3.93
    2.8 0.290 9.13
    2.1 0.240 4.08
    2.1 0.221 4.93
    2.1 0.258 4.62
    1.4
    1.4
    1.4
    1.4
    1.4
    1.4
    1.4
    Note:“─” denotes that the mixture in the vessel was not initiated in the experiment.
    下载: 导出CSV

    表  3  环氧丙烷的体积分数为1.4%时环氧丙烷蒸气-铝粉-空气杂混合物的爆炸参数

    Table  3.   Explosion parameters of gaseous epoxypropane-aluminum dust-air hybrid mixtures with a volume fraction of gaseous epoxypropane of 1.4%

    CAl/(g/m3) td/(ms) pmax/(MPa) (dp/dt)max/(MPa/s)
    500 60 0.685 72.3
    500 60 0.694 85.9
    500 60 0.707 68.8
    310 60 0.645 40.7
    310 60 0.716 50.4
    310 60 0.674 37.2
    200 20 0.748 131.0
    200 20 0.749 102.6
    200 20 0.721 74.2
    100 20 0.484 14.2
    100 20 0.485 11.4
    100 20 0.528 37.0
    80 20 0.345 11.4
    80 20 0.417 8.5
    80 20 0.445 12.3
    60 20 0.203 4.3
    60 20 0.403 11.1
    60 20 0.435 16.2
    50 20
    50 20
    50 20
    50 20
    50 20 0.218 4.2
    30 20
    30 20
    30 20
    30 20
    30 20
    30 20
    30 20 0.035 2.3
    25 20
    25 20
    25 20
    25 20
    25 20
    25 20
    25 20
    Note:“─” denotes that the mixture in the vessel was not initiated in the experiment.
    下载: 导出CSV
  • [1] Britton L G. Avoiding Static Ignition Hazards in Chemical Operations[M]. New York, USA: Center for Chemical Process Safety/AIChE, 1999: 172.
    [2] Dufaud O, Perrin L, Traore M, et al. Explosions of vapour/dust hybrid mixtures: A particular class[J]. Powder Technol, 2009, 190(1/2): 269-273. http://www.sciencedirect.com/science/article/pii/S0032591008002301
    [3] Cashdollar K L, Sapko M J, Weiss E S, et al. Laboratory and mine dust explosion research at the Bureau of Mines[C]//Cashdollar K L, Hertzberg M. Industrial Dust Explosions: Symposium on Industrial Dust Explosions. West Conshohocken, USA: ASTM International, 1987: 107-123.
    [4] Cashdollar K L. Coal dust explosibility[J]. J Loss Prev Process Ind, 1996, 9(1): 65-76. doi: 10.1016/0950-4230(95)00050-X
    [5] Chatrathi K. Dust and hybrid explosibility in a 1 m3 spherical chamber[J]. Process Saf Prog, 1994, 13(4): 183-189. doi: 10.1002/prs.680130403
    [6] Pilão R, Ramalho E, Pinho C. Explosibility of cork dust in methane/air mixtures[J]. J Loss Prev Process Ind, 2006, 19(1): 17-23. doi: 10.1016/j.jlp.2005.05.001
    [7] Denkevits A. Explosibility of hydrogen-graphite dust hybrid mixtures[J]. J Loss Prev Process Ind, 2007, 20: 698-707. doi: 10.1016/j.jlp.2007.04.033
    [8] Foniok R. Hybrid dispersive mixtures and inertized mixtures of coal dust: Explosiveness and ignitability[J]. Staub Reinhalt Luft, 1985, 45(4): 151-154. http://www.researchgate.net/publication/283749099_EXPLOSIVENESS_AND_IGNITABILITY
    [9] Liu Y, Sun J, Chen D. Flame propagation in hybrid mixture of coal dust and methane[J]. J Loss Prev Process Ind, 2007, 20(4/5/6): 691-697. http://www.sciencedirect.com/science/article/pii/S0950423007000629
    [10] 司荣军, 王春秋.瓦斯对煤尘爆炸特性影响的实验研究[J].中国安全科学学报, 2006, 16(12): 86-91. http://d.wanfangdata.com.cn/Periodical/zgaqkxxb200612016

    Si R J, Wang C Q. Experimental research on the influence of gas on the character of coal dust explosion[J]. China Safety Science Journal, 2006, 16(12): 86-91. (in Chinese) http://d.wanfangdata.com.cn/Periodical/zgaqkxxb200612016
    [11] Garcia-Agreda A, Di Benedetto A, Russo P, et al. Dust/gas mixtures explosion regimes[J]. Powder Technol, 2011, 205(1/2/3): 81-86. http://www.sciencedirect.com/science/article/pii/S0032591010004705
    [12] Nifuku M, Tsujita H, Fujino K, et al. Ignitability assessment of shredder dusts of refrigerator and the prevention of the dust explosion[J]. J Loss Prev Process Ind, 2006, 19(2/3): 181-186. http://www.sciencedirect.com/science/article/pii/S0950423005000471
    [13] Dufaud O, Perrin L, Traoré M. Dust/vapour explosions: Hybrid behaviours?[J]. J Loss Prev Process Ind, 2008, 21(4): 481-484. doi: 10.1016/j.jlp.2007.11.005
    [14] Zhang Q, Li W, Lin D C, et al. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous[J]. J Hazard Mater, 2011, 185(2/3): 756-762. http://www.ncbi.nlm.nih.gov/pubmed/20965653
    [15] 谭汝媚, 张奇, 黄莹.环境湿度对环氧丙烷蒸气爆炸参数的影响[J].高压物理学报, 2013, 27(3): 325-330. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201303002.htm

    Tan R M, Zhang Q, Huang Y. Ambient humidity influence on explosion characteristics parameters of gaseous epoxypropane[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 325-330. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL201303002.htm
    [16] Liu Q M, Li X D, Bai C H. Deflagration to detonation transition in aluminum dust-air mixture under weak ignition condition[J]. Combust Flame, 2009, 156(4): 914-921. doi: 10.1016/j.combustflame.2008.10.025
    [17] 汪佩兰, 王海福, 李盛, 等.含能材料粉尘爆炸压力和压力上升速率的研究[J].兵工学报, 1995(3): 59-63. http://www.cqvip.com/Main/Detail.aspx?id=1697930

    Wang P L, Wang H F, Li S, et al. A study on the pressure and rate of pressure rise in energetic material dusts[J]. Acta Armamentarii, 1995(3): 59-63. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=1697930
    [18] Zhang Q, Tan R, Huang Y, et al. Effects of humidity on minimum ignition energy of gaseous epoxypropane/air mixtures[J]. J Loss Prev Process Ind, 2012, 25(6): 982-988. doi: 10.1016/j.jlp.2012.05.013
    [19] Dufaud O, Traoré M, Perrin L, et al. Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere[J]. J Loss Prev Process Ind, 2010, 23(2): 226-236. doi: 10.1016/j.jlp.2009.07.019
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  7213
  • HTML全文浏览量:  2238
  • PDF下载量:  300
出版历程
  • 收稿日期:  2012-04-07
  • 修回日期:  2012-07-02

目录

    /

    返回文章
    返回