兆帕级压强范围内气体氩维里系数的确定

陈玉雷 陈其峰 顾云军 郑君 陈志云

陈玉雷, 陈其峰, 顾云军, 郑君, 陈志云. 兆帕级压强范围内气体氩维里系数的确定[J]. 高压物理学报, 2014, 28(1): 35-40. doi: 10.11858/gywlxb.2014.01.006
引用本文: 陈玉雷, 陈其峰, 顾云军, 郑君, 陈志云. 兆帕级压强范围内气体氩维里系数的确定[J]. 高压物理学报, 2014, 28(1): 35-40. doi: 10.11858/gywlxb.2014.01.006
CHEN Yu-Lei, CHEN Qi-Feng, GU Yun-Jun, ZHENG Jun, CHEN Zhi-Yun. The Virial Coefficient of Argon for Pressure in the Megapascal Region[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 35-40. doi: 10.11858/gywlxb.2014.01.006
Citation: CHEN Yu-Lei, CHEN Qi-Feng, GU Yun-Jun, ZHENG Jun, CHEN Zhi-Yun. The Virial Coefficient of Argon for Pressure in the Megapascal Region[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 35-40. doi: 10.11858/gywlxb.2014.01.006

兆帕级压强范围内气体氩维里系数的确定

doi: 10.11858/gywlxb.2014.01.006
基金项目: 国家自然科学基金(11074226);中国工程物理研究院科学技术基金(2012B0101001, 2013A0101001);冲击波物理与爆轰物理重点实验室基金(9140C670104120C67235,9140C670103130C67247)
详细信息
    作者简介:

    陈玉雷(1984-), 男, 硕士, 主要从事气体等离子体状态方程研究.E-mail:chattychen@163.com

    通讯作者:

    陈其峰(1962-), 男, 博士, 研究员, 主要从事等离子体状态方程研究.E-mail: chenqf01@gmail.com

  • 中图分类号: O521.2

The Virial Coefficient of Argon for Pressure in the Megapascal Region

  • 摘要: 设计了用于测量兆帕级压强范围内气体等温状态方程的实验装置,对300 K、0~60 MPa条件下氩气密度随压强的变化进行了精确测量。通过拟合实验数据,得到了氩气的第二和第三维里系数。由实验气体氩的维里系数,确定了其林纳德-琼斯势(L-J势)参数。采用该势参数对不同温度下氩气的状态方程进行了拓宽计算,并与其它实验和经验状态方程进行了比较分析,确定其适用范围。

     

  • 图  由不同状态方程得到的氩气密度计算结果

    Figure  1.  The calculated densities of argon by various equations of state

    图  气体等温状态方程测量实验装置示意图

    Figure  2.  Schematic of gas isothermal equation of state measurement device

    图  本实验数据与几种状态方程计算结果的比较

    Figure  3.  Comparison of present experimental data with calculated results by various equations of state

    图  4(a)  氩气密度的计算结果与实验结果的比较

    Figure  4(a).  Comparison of calculated and experimental argon density

    图  4(b)  计算密度与实验测量结果相对误差的比较

    Figure  4(b).  Comparison of the relative error of calculated densities and experimental data

    图  不同势参数描述的相互作用势的比较

    Figure  5.  Comparison of interaction potential with different potential parameters

    图  氩气密度随压强变化的计算结果与实验结果比较(符号表示实验结果[12],实线表示本研究计算结果)

    Figure  6.  Comparison of computed and experimental argon density variation with pressure (Symbols represent experimental data[12], and solid lines represent computed results in this study)

    表  1  氩气密度测量数据

    Table  1.   Experimental data of argon density

    T/(K) p/(MPa) ρ/(g/cm3)
    298±0.5 5.15±0.01 0.086 2±0.000 9
    299±0.5 10.52±0.01 0.180 5±0.001 8
    299±0.5 20.47±0.01 0.348 1±0.003 4
    298±0.5 30.60±0.01 0.480 9±0.002 4
    299±0.5 40.35±0.01 0.592 3±0.003 0
    300±0.5 55.00±0.01 0.720 3±0.003 6
    下载: 导出CSV

    表  2  由本实验势参数计算得到的不同温度下氩气的维里系数

    Table  2.   The temperature-dependent virial coefficients of argon computed by present potential parameters

    T/(K) B/(cm3·mol-1) C/(cm6·mol-2)
    200 -68.5 2 470
    300 -23.2 2 014
    400 -1.6 1 789
    500 10.4 1 696
    600 17.9 1 647
    700 22.9 1 613
    800 26.5 1 585
    下载: 导出CSV
  • [1] Stevenson D J. Interiors of the giant planets[J]. Annu Rev Earth Planet Sci, 1982, 10: 257-295. doi: 10.1146/annurev.ea.10.050182.001353
    [2] Christian R H, Yarger F L. Equation of state of gases by shock wave measurements. Ⅰ. Experimental method and the Hugoniot of argon[J]. J Chem Phys, 1955, 23(11): 2042-2044. doi: 10.1063/1.1740661
    [3] Bespalov V E, Griaznov V K, Dremin A N, et al. Dynamic compression of non-ideal argon plasma[J]. Zh Eksp Teor Fiz, 1975, 69: 2059-2066. http://adsabs.harvard.edu/abs/1975ZhETF..69.2059B
    [4] Fortov V E, Leontev A A, Dremin A N, et al. Generation of nonideal plasma by strong shock wave[J]. Zh Eksp Teor Fiz, 1976, 71: 225.
    [5] van Thiel M, Shaner J, Salinas E. Compendium of shock wave data, UCRL-50108[R]. Livermore, USA: Lawrence Livermore National Laboratory, 1977.
    [6] Griaznov V K, Zhernokletov M V, Zubarev V N, et al. Thermodynamic properties of a nonideal argon or xenon plasma[J]. Zh Eksp Teor Fiz, 1980, 78: 573-585. http://adsabs.harvard.edu/abs/1980JETP...51..288G
    [7] Tegeler C, Span R, Wagner W. A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1 000 MPa[J]. J Phys Chem Ref Data, 1999, 28(3): 779-850. doi: 10.1063/1.556037
    [8] Bird R B, Spotz E L, Hirschfelder J O. The third virial coefficient for non-polar gases[J]. J Chem Phys, 1950, 18(10): 1395-1402. doi: 10.1063/1.1747484
    [9] 徐锡申, 张万箱.实用物态方程理论导引[M].北京: 科学出版社, 1986: 58-59.

    Xu X S, Zhang W X. Introduction to Theory of Applied Equations of State[M]. Beijing: Science Press, 1986: 58-59. (in Chinese)
    [10] Levine H B, McQuarrie D A. Second and third ordinary and dielectric virial coefficients for nonpolar axial molecules[J]. J Chem Phys, 1966, 44(9): 3500-3505. doi: 10.1063/1.1727256
    [11] Michels A, Wijker H, Wijker H. Isotherms of argon between 0 ℃ and 150 ℃ and pressures up to 2 900 atmospheres[J]. Physica, 1949, 15(7): 627-633. doi: 10.1016/0031-8914(49)90119-6
    [12] Vargaftik N B. Tables on the Thermophysical Properties of Liquids and Gases: In Normal and Dissociated States[M]. 2nd Ed. Washington D C, USA: Hemisphere Publishing Corporation, 1975: 543-570.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  6782
  • HTML全文浏览量:  2314
  • PDF下载量:  381
出版历程
  • 收稿日期:  2012-05-03
  • 修回日期:  2012-08-21

目录

    /

    返回文章
    返回