超高压条件下室温离子液体结构和性质的研究进展

苏磊

苏磊. 超高压条件下室温离子液体结构和性质的研究进展[J]. 高压物理学报, 2014, 28(1): 1-10. doi: 10.11858/gywlxb.2014.01.001
引用本文: 苏磊. 超高压条件下室温离子液体结构和性质的研究进展[J]. 高压物理学报, 2014, 28(1): 1-10. doi: 10.11858/gywlxb.2014.01.001
SU Lei. Progress of Investigations on the Condensed Structures and Properties of Room Temperature Ionic Liquid under High Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 1-10. doi: 10.11858/gywlxb.2014.01.001
Citation: SU Lei. Progress of Investigations on the Condensed Structures and Properties of Room Temperature Ionic Liquid under High Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 1-10. doi: 10.11858/gywlxb.2014.01.001

超高压条件下室温离子液体结构和性质的研究进展

doi: 10.11858/gywlxb.2014.01.001
基金项目: 国家自然科学基金(21273206); 河南省高等学校青年骨干教师资助计划项目(2010GGJS-110)
详细信息
    作者简介:

    苏 磊(1977-),男,博士,教授,主要从事高压物理及物理化学研究.E-mail:leisu2050@gmail.com

  • 中图分类号: O521.2

Progress of Investigations on the Condensed Structures and Properties of Room Temperature Ionic Liquid under High Pressure

  • 摘要: 室温离子液体作为一种超级绿色溶剂,在工业化生产中具有极其广阔的应用前景。探讨室温离子液体在超高压等极端条件下的结构和性质之间的内在联系,阐明室温离子液体结晶固化机制,不但是离子液体这种特殊物质的基础研究问题,同时其结果也将直接使离子液体的应用研究获得收益。在对室温离子液体的研究现状进行综合分析的基础上,着重概述了超高压等极端条件下室温离子液体结构和性质的研究进展、潜在应用和发展方向,以期有助于今后室温离子液体的研究和应用。

     

  • 图  高压下室温离子液体[Bmim][PF6]的结晶过程[34]

    Figure  1.  In situ crystallization of low-melting ionic liquid [Bmim][PF6] under high pressure[34]

    图  高压下室温离子液体[Bmim][BF4]的多相态变化过程[35]

    Figure  2.  In situ observation of multiple phase transitions in low-melting ionic liquid [Bmim][BF4] under high pressure[35]

    图  [Bmim][PF6]在0~1.0 GPa压力下的p-T相图[31]

    Figure  3.  p-T phase diagram of ionic liquid [Bmim][PF6] under high pressure up to 1.0 GPa[31]

    图  [Emim][PF6]在0~1.0 GPa压力下的p-T相图[31]

    Figure  4.  p-T phase diagram of ionic liquid [Emim][PF6] under high pressure up to 1.0 GPa[31]

    图  5(a)  高压下[Bmim][BF4]声速的等温线[41]

    Figure  5(a).  Isotherms for the experimental speed of sound in [Bmim][BF4][41]

    图  5(b)  高压下[Bmim][BF4]密度的等温线[41]

    Figure  5(b).  Isotherms for the experimental density of [Bmim][BF4][41]

    图  物质压缩和冷却过程示意图

    Figure  6.  Schematic drawing of compression and cooling

  • [1] Wasserscheid P, Welton T. Ionic Liquids in Synthesis[M]. Weinheim, Germany: Wiley-VCH, 2003.
    [2] Berg R W. Raman spectroscopy and ab-initio model calculations on ionic liquids[J]. Monatshefte für Chemie, 2007, 138(11): 1045-1075. doi: 10.1007/s00706-007-0760-9
    [3] Iwata K, Okajima H, Saha S, et al. Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy[J]. Acc Chem Res, 2007, 40(11): 1174-1181. doi: 10.1021/ar700074c
    [4] 田中华, 王键吉, 刘 琴. 室温离子液体物理化学性质研究进展[J]. 化学通报, 2004, 67(2): 1-10. http://d.wanfangdata.com.cn/Periodical_hxtb200401009.aspx

    Tian Z H, Wang J J, Liu Q. Recent advances in the physico-chemical properties study of room temperature ionic liquids[J]. Chemistry, 2004, 67(2): 1-10. (in Chinese) http://d.wanfangdata.com.cn/Periodical_hxtb200401009.aspx
    [5] Walden P. Molecular weights and electrical conductivity of several fused salts[J]. Bull Acad Imp Sci, 1914, 8: 405-422. http://www.mendeley.com/research/molecular-weights-electrical-conductivity-several-fused-salts/
    [6] Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. J Chem Soc Chem Commun, 1992(13): 965-967. doi: 10.1039/c39920000965
    [7] Bowlas C J, Bruce D W, Seddon K R. Liquid-crystalline ionic liquids[J]. Chem Commun, 1996(14): 1625-1626. doi: 10.1039/cc9960001625
    [8] Binnemans K. Ionic liquid crystals[J]. Chem Rev, 2005, 105(11): 4148-4204. doi: 10.1021/cr0400919
    [9] Tao R T, Miao S D, Liu Z M, et al. Pd nanoparticles immobilized on sepiolite by ionic liquids: Efficient catalysts for hydrogenation of alkenes and Heck reactions[J]. Green Chem, 2009, 11(1): 96-101. doi: 10.1039/B811587G
    [10] Cui X J, Zhang S G, Shi F, et al. The influence of the acidity of ionic liquids on catalysis[J]. ChemSusChem, 2010, 3(9): 1043-1047. doi: 10.1002/cssc.201000075
    [11] 张锁江, 徐春明, 吕兴梅, 等. 离子液体与绿色化学[M]. 北京: 科学出版社, 2009.

    Zhang S J, Xu C M, Lü X M, et al. Ionic Liquids and Green Chemstry[M]. Beijing: Science Press, 2009. (in Chinese)
    [12] Liu H T, Liu Y, Li J H. Ionic liquids in surface electrochemistry[J]. Phys Chem Chem Phys, 2010, 12(8): 1685-1697. doi: 10.1039/b921469k
    [13] Sun Y, Li C S, Zheng W J. Ionic liquid-assisted hydrothermal synthesis of monoclinic structured LaVO4 nanowires through topotactic transformation from hexagonal La(OH)3 nanowires[J]. Cryst Growth Des, 2010, 10(1): 262-267. doi: 10.1021/cg900887q
    [14] Bai X T, Gao Y A, Liu H G, et al. Synthesis of amphiphilic ionic liquids terminated gold nanorods and their superior catalytic activity for the reduction of nitro compounds[J]. J Phys Chem C, 2009, 113(41): 17730-17736. doi: 10.1021/jp906378d
    [15] Zhao H, Song Z. Migration of reactive trace compounds from Novozym® 435 into organic solvents and ionic liquids[J]. Biochem Eng J, 2010, 49(1): 113-118. doi: 10.1016/j.bej.2009.12.004
    [16] Wang C M, Luo H M, Jiang D E, et al. Carbon dioxide capture by superbase-derived protic ionic liquids[J]. Angew Chem Int Edit, 2010, 49(34): 5978-5981. doi: 10.1002/anie.201002641
    [17] 李效宇, 苗晓青, 皇培培, 等. 离子液体溴化1-辛基-3-甲基咪唑诱发金鱼血红细胞微核和核异常的研究[J]. 安全与环境学报, 2010, 10(2): 5-7. http://www.cqvip.com/QK/83738X/201002/33639517.html

    Li X Y, Miao X Q, Huang P P, et al. Micronuclei and nuclear anomalies in the erythrocytes of goldfish induced by ionic liquid 1-octyl-3-methylimidazolium bromide[J]. Journal of Safety and Environment, 2010, 10(2): 5-7. (in Chinese) http://www.cqvip.com/QK/83738X/201002/33639517.html
    [18] Aparicio S, Atilhan M, Karadas F. Thermophysical properties of pure ionic liquids: Review of present situation[J]. Ind Eng Chem Res, 2010, 49(20): 9580-9595. doi: 10.1021/ie101441s
    [19] Holbrey J D, Reichert W M, Nieuwenhuyzen M, et al. Crystal polymorphism in 1-butyl-3-methylimidazolium halides: Supporting ionic liquid formation by inhibition of crystallization[J]. Chem Commun, 2003(14): 1636-1637. doi: 10.1039/b304543a
    [20] Roche J D, Gordon C M, Imrie C T, et al. Application of complementary experimental techniques to characterization of the phase behavior of[C16mim][PF6]and[C14mim][PF6][J]. Chem Mater, 2003, 15(16): 3089-3097. doi: 10.1021/cm021378u
    [21] Li L B, Groenewold J, Picken S J. Transient phase-induced nucleation in ionic liquid crystals and size-frustrated thickening[J]. Chem Mater, 2005, 17(2): 250-257. doi: 10.1021/cm048811f
    [22] Zou Y, Xu H J, Wu G Z, et al. Structural analysis of [ChCl]m[ZnCl2]n ionic liquid by X-ray absorption fine structure spectroscopy[J]. J Phys Chem B, 2009, 113(7): 2066-2070. doi: 10.1021/jp809788u
    [23] Takekiyo T, Hatano N, Imai Y, et al. Pressure-induced phase transition of 1-butyl-3-methylimidazolium hexafluorophosphate[bmim][PF6][J]. High Pressure Res, 2011, 31: 35-38. doi: 10.1080/08957959.2010.521501
    [24] Imai Y, Takekiyo T, Abe H, et al. Pressure-and temperature-induced Raman spectral changes of 1-butyl-3-methylimidazolium tetrafluoroborat[J]. High Pressure Res, 2011, 31: 53-57. doi: 10.1080/08957959.2010.521731
    [25] Takekiyo T, Imai Y, Hatano N, et al. Conformational preferences of two imidazolium-based ionic liquids at high pressures[J]. Chem Phys Lett, 2011, 511(4/5/6): 241-246. http://www.sciencedirect.com/science/article/pii/S0009261411007159
    [26] Chang H C, Jiang J C, Chang C Y, et al. Structural organization in aqueous solutions of 1-butyl-3-methylimidazolium halides: A high-pressure infrared spectroscopic study on ionic liquids[J]. J Phys Chem B, 2008, 112(14): 4351-4356. doi: 10.1021/jp0773482
    [27] Chang H C, Jiang J C, Tsai W C, et al. Hydrogen bond stabilization in 1, 3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate probed by high pressure: The role of charge-enhanced C-H…O interactions in the room-temperature ionic liquid[J]. J Phys Chem B, 2006, 110(7): 3302-3307. doi: 10.1021/jp0560009
    [28] Chang H C, Jiang J C, Liou Y C, et al. Effects of water and methanol on the molecular organization of 1-butyl-3-methylimidazolium tetrafluoroborate as functions of pressure and concentration[J]. J Chem Phys, 2008, 129(4): 044506. doi: 10.1063/1.2958256
    [29] Umebayashi Y, Jiang J C, Shan Y L, et al. Structural change of ionic association in ionic liquid/water mixtures: A high-pressure infrared spectroscopic study[J]. J Chem Phys, 2009, 130(12): 124503. doi: 10.1063/1.3100099
    [30] Chang H C, Jiang J C, Su J C, et al. Evidence of rotational isomerism in 1-butyl-3-methylimidazolium halides: A combined high-pressure infrared and Raman spectroscopic study[J]. J Phys Chem A, 2007, 111(38): 9201-9206. doi: 10.1021/jp071055r
    [31] Chang H C, Chang C Y, Su J C, et al. Conformations of 1-butyl-3-methylimidazolium chloride probed by high pressure Raman spectroscopy[J]. Int J Mol Sci, 2006, 7(10): 417-424. doi: 10.3390/i7100417
    [32] Russina O, Fazio B, Schmidt C, et al. Structural organization and phase behaviour of 1-butyl-3-methylimidazolium hexafluorophosphate: An high pressure Raman spectroscopy study[J]. Phys Chem Chem Phys, 2011, 13(25): 12067-12074. doi: 10.1039/c0cp02684k
    [33] Su L, Li L B, Hu Y, et al. Phase transition of [Cn-mim][PF6]under high pressure up to 1.0 GPa[J]. J Chem Phys, 2009, 130(18): 184503. doi: 10.1063/1.3127363
    [34] Su L, Li M, Zhu X, et al. In situ crystallization of low-melting ionic liquid[BMIM][PF6]under high pressure up to 2 GPa[J]. J Phys Chem B, 2010, 114(15): 5061-5065. doi: 10.1021/jp912191z
    [35] Su L, Zhu X, Wang Z, et al. In situ observation of multiple phase transitions in low-melting ionic liquid[BMIM][BF4]under high pressure up to 30 GPa[J]. J Phys Chem B, 2012, 116(7): 2216-2222. doi: 10.1021/jp2108939
    [36] Ellis B, Keim W, Wasserscheid P. Linear dimerisation of but-1-ene in biphasic mode using buffered chloroaluminate ionic liquid solvents[J]. Chem Commun, 1999(4): 337-338. doi: 10.1039/a808346k
    [37] Boscaino R, Cusumano C, Gelardi F M. Angular dependence of the spin-packet width in dilute ruby samples[J]. J Phys C Solid State Phys, 1982, 15(2): 305-309. doi: 10.1088/0022-3719/15/2/015
    [38] Elliott S R. The origin of the first sharp diffraction peak in the structure factor of covalent glasses and liquids[J]. J Phys Condens Matter, 1992, 4(38): 7661-7678. doi: 10.1088/0953-8984/4/38/003
    [39] Rilo E, Vila J, Pico J, et al. Electrical conductivity and viscosity of aqueous binary mixtures of 1-alkyl-3-methyl imidazolium tetrafluoroborate at four temperatures[J]. J Chem Eng Data, 2010, 55(2): 639-644. doi: 10.1021/je900600c
    [40] Minamikawa Y, Kometani N. High-pressure study of solvation properties of room-temperature ionic liquids[J]. J Phys Conf Ser, 2010, 215(1): 012067. http://adsabs.harvard.edu/abs/2010JPhCS.215a2067M
    [41] de Azevedo R G, Esperanca J M S S, Najdanovic-Visak V, et al. Thermophysical and thermodynamic properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range[J]. J Chem Eng Data, 2005, 50(3): 997-1008. doi: 10.1021/je049534w
    [42] Sanmamed Y A, Navia P, Gonzlez-Salgado D, et al. Pressure and temperature dependence of isobaric heat capacity for[Emim][BF4], [Bmim][BF4], [Hmim][BF4], and[Omim][BF4][J]. J Chem Eng Data, 2010, 55(2): 600-604. doi: 10.1021/je9004992
    [43] Swatloski R P, Visser A E, Reichert W M, et al. Solvation of 1-butyl-3-methylimidazolium hexafluorophosphate in aqueous ethanol-A green solution for dissolving ‘hydrophobic’ ionic liquids[J]. Chem Commun, 2001(20): 2070-2071. doi: 10.1039/b106601n
    [44] Domanska U, Morawski P. Influence of high pressure on solubility of ionic liquids: Experimental data and correlation[J]. Green Chem, 2007, 9(4): 361-368. doi: 10.1039/B608059F
    [45] Salvador A C, Santos M D, Saraiva J A. Effect of the ionic liquid[bmim]Cl and high pressure on the activity of cellulase[J]. Green Chem, 2010, 12(4): 632-635. doi: 10.1039/b918879g
    [46] Zhao Y, Liu X, Lu X, et al. The behavior of ionic liquids under high pressure: A molecular dynamics simulation[J]. J Phys Chem B, 2012, 116(35): 10876-10884. doi: 10.1021/jp3070568
    [47] Pretti C, Chiappe C, Pieraccini D, et al. Acute toxicity of ionic liquids to the zebrafish(Danio rerio)[J]. Green Chem, 2006, 8(3): 238-240. doi: 10.1039/B511554J
    [48] Sheldon R A, Lau R M, Sorgedrager M J, et al. Biocatalysis in ionic liquids[J]. Green Chem, 2002, 4(2): 147-151. doi: 10.1039/b110008b
    [49] Choudhury A R, Winterton N, Steiner A, et al. In situ crystallization of low-melting ionic liquids[J]. J Am Chem Soc, 2005, 127(48): 16792-16793. doi: 10.1021/ja055956u
    [50] Choudhury A R, Winterton N, Steiner A, et al. In situ crystallization of ionic liquids with melting points below-25 ℃[J]. Cryst Eng Comm, 2006, 8(10): 742-745. doi: 10.1039/B609598D
    [51] König A, Stepanski M, Kuszlik A, et al. Ultra-purification of ionic liquids by melt crystallization[J]. Chem Eng Res Des, 2008, 86(7): 775-780. doi: 10.1016/j.cherd.2008.04.002
    [52] Mudring A V. Solidification of ionic liquids: Theory and techniques[J]. Aust J Chem, 2010, 63(4): 544-564. doi: 10.1071/CH10017
    [53] Russina O, Fazio B, Schmidt C, et al. Structural organization and phase behaviour of 1-butyl-3-methylimidazolium hexafluorophosphate: An high pressure Raman spectroscopy study[J]. Phys Chem Chem Phys, 2011, 13(25): 12067-12074. doi: 10.1039/c0cp02684k
  • 加载中
图(7)
计量
  • 文章访问数:  7182
  • HTML全文浏览量:  2020
  • PDF下载量:  327
出版历程
  • 收稿日期:  2013-12-17
  • 修回日期:  2014-01-30

目录

    /

    返回文章
    返回