不同长度容器内MgSiO3钙钛矿单晶的合成

许俊闪 吴小平

许俊闪, 吴小平. 不同长度容器内MgSiO3钙钛矿单晶的合成[J]. 高压物理学报, 2013, 27(6): 908-914. doi: 10.11858/gywlxb.2013.06.018
引用本文: 许俊闪, 吴小平. 不同长度容器内MgSiO3钙钛矿单晶的合成[J]. 高压物理学报, 2013, 27(6): 908-914. doi: 10.11858/gywlxb.2013.06.018
XU Jun-Shan, WU Xiao-Ping. Synthesis of the Single Crystal of MgSiO3 Perovskite in Capsules with Different Lengths[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 908-914. doi: 10.11858/gywlxb.2013.06.018
Citation: XU Jun-Shan, WU Xiao-Ping. Synthesis of the Single Crystal of MgSiO3 Perovskite in Capsules with Different Lengths[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 908-914. doi: 10.11858/gywlxb.2013.06.018

不同长度容器内MgSiO3钙钛矿单晶的合成

doi: 10.11858/gywlxb.2013.06.018
详细信息
    通讯作者:

    吴小平 E-mail:wxp@ustc.edu.cn

Synthesis of the Single Crystal of MgSiO3 Perovskite in Capsules with Different Lengths

  • 摘要: MgSiO3钙钛矿是地球下地幔中含量最丰富的物质,通常仅在高于22 GPa的压力下才能稳定存在,研究其单晶性质非常困难。实验合成MgSiO3钙钛矿,尤其是大颗粒单晶,对于研究下地幔的性质极其重要。利用川井型多砧实验装置,在25 GPa和1 500 ℃的条件下合成了大颗粒MgSiO3钙钛矿单晶。通过对比不同长度样品容器的实验结果发现,即使在较长容器底端的大温度梯度区也可长出大颗粒的晶体,这与前人的实验结果不同。认为大温度梯度虽然可造成高结晶核密度,但也可以提高晶体生长的驱动力,使晶体更快生长,而且较长的容器可以增加晶体的产量。另外,还从孪晶的角度分析了MgSiO3钙钛矿的生长机制,对进一步认识和理解高压下MgSiO3钙钛矿晶体的生长特性有重要意义。

     

  • Dziewonski A M, Anderson D L. Preliminary reference Earth model [J]. Phys Earth Planet Inter, 1981, 25(4): 297-356.
    Katsura T, Yoneda A, Yamazaki D, et al. Adiabatic temperature profile in the mantle [J]. Phys Earth Planet Inter, 2010, 183(1/2): 212-218.
    Strixrude L, Hemly R J, Fei Y, et al. Thermoelasticity of silicate perovskite and magnesiowustite and stratification of the earth's mantle [J]. Science, 1992, 257(5073): 1099-1101.
    Ito E, Takahashi E. Post-spinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications [J]. J Geophys Res, 1989, 94(B8): 10637-10646.
    Maynard J. Resonant ultrasound spectroscopy [J]. Phys Today, 1996, 49(1): 26-31.
    Liu L G. Post-oxide phase of forsterite and enstatite [J]. Geophys Res Lett, 1975, 2(10): 417-419.
    Ito E, Weidner D J. Crystal growth of MgSiO3 perovskite [J]. Geophys Res Lett, 1986, 13(5): 464-466.
    Dobson D P, Jacobsen S. The flux growth of magnesium silicate perovskite single crystal [J]. Am Miner, 2004, 89(5/6): 807-811.
    Shatskiy A, Fukui H, Matsuzaki T, et al. Growth of large (1 mm) MgSiO3 perovskite single crystals: A thermal gradient method at ultrahigh pressure [J]. Am Miner, 2007, 92(10): 1733-1749.
    Litasov K, Ohtani E, Langenhorst F, et al. Water solubility in Mg-perovskites and water storage capacity in the lower mantle [J]. Earth Planet Sci Lett, 2003, 211(1/2): 189-203.
    Paterson M S. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials [J]. Bull Mineral, 1982, 105(1): 20-29.
    Bolfan-Casanova N, Keppler H, Rubie D C. Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: Implications for the distribution of water in the Earth's mantle [J]. Earth Planet Sci Lett, 2000, 182(3/4): 209-221.
    Xu J, Yamazaki D, Katsura T, et al. Silicon and magnesium diffusion in a single crystal of MgSiO3 perovskite [J]. J Geophys Res, 2011, 116(B12): B12205.
    Min N B. The Physical Basis of Crystal Growth [M]. Shanghai: Shanghai Science Technical Publishers, 1982: 15-16. (in Chinese)
    闵乃本. 晶体生长的物理基础 [M]. 上海: 上海科学技术出版社, 1982: 15-16.
    Ito E, Matsui Y. Synthesis and crystal-chemical characterization of MgSiO3 perovskite [J]. Earth Planet Sci Lett, 1978, 38(2): 443-450.
    Kawamoto T, Hervig R H, Holloway J R. Experimental evidence for a hydrous transition zone in the early Earth's mantle [J]. Earth Planet Sci Lett, 1996, 142(3/4): 587-592.
    Kohlstedt D L, Keppler H, Rubie D C. Solubility of water in the in the , and phases of (Mg, Fe)2SiO4 [J]. Contrib Mineral Petrol, 1996, 123(4): 345-357.
  • 加载中
计量
  • 文章访问数:  5664
  • HTML全文浏览量:  413
  • PDF下载量:  544
出版历程
  • 收稿日期:  2012-06-19
  • 修回日期:  2012-08-25
  • 发布日期:  2013-12-15

目录

    /

    返回文章
    返回