颗粒金属材料冲击压缩细观数值模拟

乔良 张先锋 何勇 史安顺 张将

乔良, 张先锋, 何勇, 史安顺, 张将, . 颗粒金属材料冲击压缩细观数值模拟[J]. 高压物理学报, 2013, 27(6): 863-871. doi: 10.11858/gywlxb.2013.06.011
引用本文: 乔良, 张先锋, 何勇, 史安顺, 张将, . 颗粒金属材料冲击压缩细观数值模拟[J]. 高压物理学报, 2013, 27(6): 863-871. doi: 10.11858/gywlxb.2013.06.011
QIAO Liang, ZHANG Xian-Feng, HE Yong, SHI An-Shun, ZHANG Jiang, . Meso-Scale Numerical Simulation of the Shock Compression of Particle Metal Materials[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 863-871. doi: 10.11858/gywlxb.2013.06.011
Citation: QIAO Liang, ZHANG Xian-Feng, HE Yong, SHI An-Shun, ZHANG Jiang, . Meso-Scale Numerical Simulation of the Shock Compression of Particle Metal Materials[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 863-871. doi: 10.11858/gywlxb.2013.06.011

颗粒金属材料冲击压缩细观数值模拟

doi: 10.11858/gywlxb.2013.06.011
详细信息
    通讯作者:

    张先锋 E-mail:lynx@mail.njust.edu.cn

Meso-Scale Numerical Simulation of the Shock Compression of Particle Metal Materials

  • 摘要: 颗粒金属材料的细观特性对其宏观力学性能有着重要影响。为进一步分析颗粒直径、分布、形态、孔隙率等细观特性对宏观冲击响应行为的影响规律,从颗粒金属材料的细观结构入手,经合理简化,建立了能够反映材料细观分布特性的有限元模型。基于AUTODYN有限元计算程序,对颗粒金属材料冲击压缩细观行为进行了数值模拟,确定了典型颗粒金属材料冲击Hugoniot参数,并与已有的实验结果进行了对比。获取了材料细观特性(颗粒粒径、材料密实度)对材料宏观冲击压缩特性的影响规律,并从细观尺度上获取了材料冲击压缩过程中颗粒冲击变形演化及冲击温升情况。结果表明,数值仿真结果与已有实验数据吻合良好,颗粒金属材料的细观特性对其宏观响应行为有较为显著的影响。

     

  • Zhang X F, Zhao X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731-739. (in Chinese)
    张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731-739.
    Thadhani N N, Graham R A, Royal T, et al. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: Time-resolved pressure measurements and materials analysis [J]. J Appl Phys, 1997, 82(3): 1113-1128.
    Boslough M B. A thermochemical model for shock-induced reactions (heat detonations) in solids [J]. J Chem Phys, 1990, 92(3): 1839-1848.
    Eakins D E, Thadhani N N. Shock compression of reactive powder mixtures [J]. Int Mater Rev, 2009, 54(4): 181-213.
    Benson D J. An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder [J]. Model Simulat Mater Sci Eng, 1994, 2(3): 535-550.
    Benson D J, Conley P. Eulerian finite-element simulations of experimentally acquired HMX microstructures [J]. Model Simulat Mater Sci Eng, 1999, 7(3): 333-354.
    Benson D J. The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation [J]. Wave Motion, 1995, 21(1): 85-99.
    Benson D J, Nellis W J. Dynamic compaction of copper powder: Computation and experiment [J]. Appl Phys Lett, 1994, 65(4): 418-420.
    Austin R A, McDowell D L, Benson D J. Numerical simulation of shock wave propagation in spatially-resolved particle systems [J]. Model Simulat Mater Sci Eng, 2006, 14(4): 537-561.
    Austin R A. Numerical simulation of the shock compression of microscale reactive particle systems [D]. Atlanta: Georgia Institute of Technology, 2005.
    Austin R A. Modeling shock wave propagation in discrete Ni/Al powder mixture [D]. Atlanta: Georgia Institute of Technology, 2010.
    Eakins D E, Thadhani N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni+ Al powder mixtures [J]. Acta Mater, 2008, 56(7): 1496-1510.
    Eakins D E, Thadhani N N. Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture [J]. J Appl Phys, 2007, 101(4): 043508.
    Eakins D E. Role of heterogeneity in the chemical and mechanical shock-response of nickel and aluminum powder mixtures [D]. Atlanta: Georgia Institute of Technology, 2007.
    Fredenburg D A, Vogler T J, Thadhani N N. Meso-scale simulation of the shock compression response of equiaxed and needle morphology 6061 aluminum powders [C]//Elert M L, Furnish M D, Anderson W W, et al. Shock Compression of Condensed Matter-2009. New York: AIP, 2010: 1341-1344.
    Zhou D, Huang F L, Yao H S. Meso-damage experimental studies on the PBX [J]. Chinese Journal of Explosives Propellants, 2007, 30(3): 16-18. (in Chinese)
    周栋, 黄风雷, 姚惠生. PBX炸药细观损伤的实验研究 [J]. 火炸药学报, 2007, 30(3): 16-18.
    Zhou D, Huang F L, Yao H S. Study on the visco-elastic constitutive model of PBX [J]. Transactions of Beijing Institute of Technology, 2007, 27(11): 945-947. (in Chinese)
    周栋, 黄风雷, 姚惠生. PBX炸药粘弹性损伤本构关系研究 [J]. 北京理工大学学报, 2007, 27(11): 945-947.
    Chen P W, Ding Y S, Chen L. Progress in the study of damage and mechanical properties of energetic materials [J]. Advances in Mechanics, 2002, 32(2): 212-222. (in Chinese)
    陈鹏万, 丁雁生, 陈力. 含能材料装药的损伤及力学性能研究进展 [J]. 力学进展, 2002, 32(2): 212-222.
    Dai K D, Chen P W. Numerical simulation of the shock compaction of W/Cu powders [J]. Mater Sci Forum, 2011, 673: 113-118.
    Granqvist C G, Buhrman R A. Ultrafine metal particles [J]. J Appl Phys, 1976, 47(5): 2200-2219.
    Marsh S P. LASL Shock Hugoniot Data [Z]. Berkeley, CA: University of California Press, 1980.
    Williamson R L. Parametric studies of dynamic powder consolidation using a particle-level numerical model [J]. J Appl Phys, 1990, 68(3): 1287-1296.
    Zhang X F, Zhao X N, Qiao L. Theory analysis on shock-induced chemical reaction of reactive metal [J]. Explosive and Shock Waves, 2010, 30(2): 145-151. (in Chinese)
    张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J].爆炸与冲击, 2010, 30(2): 145-151.
    Zhang X F, Qiao L, Shi A S, et al. A cold energy mixture theory for the equation of state in solid and porous metal mixtures [J]. J Appl Phys, 2011, 110(1): 013506.
  • 加载中
计量
  • 文章访问数:  6264
  • HTML全文浏览量:  309
  • PDF下载量:  392
出版历程
  • 收稿日期:  2012-03-06
  • 修回日期:  2012-05-30
  • 发布日期:  2013-12-15

目录

    /

    返回文章
    返回