爆炸冲击波作用下C60O碰撞的第一性原理分子动力学模拟

李建营 彭汝芳 刘利民 金波 梁华 刘强强 范利生 楚士晋

李建营, 彭汝芳, 刘利民, 金波, 梁华, 刘强强, 范利生, 楚士晋. 爆炸冲击波作用下C60O碰撞的第一性原理分子动力学模拟[J]. 高压物理学报, 2013, 27(2): 292-298. doi: 10.11858/gywlxb.2013.02.018
引用本文: 李建营, 彭汝芳, 刘利民, 金波, 梁华, 刘强强, 范利生, 楚士晋. 爆炸冲击波作用下C60O碰撞的第一性原理分子动力学模拟[J]. 高压物理学报, 2013, 27(2): 292-298. doi: 10.11858/gywlxb.2013.02.018
LI Jian-Ying, PENG Ru-Fang, LIU Li-Min, JIN Bo, LIANG Hua, LIU Qiang-Qiang, FAN Li-Sheng, CHU Shi-Jin. Studies on the Collision of C60O Based on ab Initio Molecular Dynamics Method[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 292-298. doi: 10.11858/gywlxb.2013.02.018
Citation: LI Jian-Ying, PENG Ru-Fang, LIU Li-Min, JIN Bo, LIANG Hua, LIU Qiang-Qiang, FAN Li-Sheng, CHU Shi-Jin. Studies on the Collision of C60O Based on ab Initio Molecular Dynamics Method[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 292-298. doi: 10.11858/gywlxb.2013.02.018

爆炸冲击波作用下C60O碰撞的第一性原理分子动力学模拟

doi: 10.11858/gywlxb.2013.02.018
详细信息
    通讯作者:

    彭汝芳 E-mail:rfpeng2006@163.com

Studies on the Collision of C60O Based on ab Initio Molecular Dynamics Method

  • 摘要: 利用爆炸产生的极端高温高压能够制备较高产率的He原子内嵌富勒烯,但爆炸环境的特殊性使得反应机理十分复杂,富勒烯之间的相互作用也难以预料。以C60O及C60为模型,采用第一性原理分子动力学方法模拟爆炸极端条件下富勒烯分子的碰撞过程。当分子质心碰撞速度为3.28 km/s时,通过模拟得到C60O相互碰撞产生CO@C60,C60碰撞后损失两个C原子可得到C58分子。模拟计算可帮助理解碰撞过程中内嵌富勒烯的形成机理,有助于开展富勒烯改性实验的设计。

     

  • Hvelplund P, Andersen L H, Haugen H K, et al. Dynamical fragmentation of C60 ions [J]. Phys Rev Lett, 1992, 69(13): 1915-1918.
    Sato K, Kako M, Suzuki M, et al. Synthesis of silylene-bridged endohedral metallofullerene Lu3N@Ih-C80 [J]. J Am Chem Soc, 2012, 134(38): 16033-16039.
    Hachiya M, Nikawa H, Mizorogi N, et al. Exceptional chemical properties of Sc@C2v (9)-C82 probed with adamantylidene carbene [J]. J Am Chem Soc, 2012, 134(37): 15550-15555.
    Wan Z M, Christian J F, Anderson S L. Ne++C60: Collision energy and impact parameter dependence for endohedral complex formation, fragmentation, and charge transfer [J]. J Chem Phys, 1992, 96(4): 3344-3346.
    Ehlich R, Knospe O, Schmidt R. Molecular dynamics studies of inelastic scattering and fragmentation in collisions of C60 with rare-gas atoms [J]. J Phys B: At Mol Opt Phys, 1997, 30(4): 5429-5433.
    Patchkovskii S, Thiel W. Radical impurity mechanisms for helium incorporation into buckminsterfullerene [J]. Helv Chim Acta, 1997, 80(2): 495-509.
    Campbell E E B, Ehlich R, Heusler G, et al. Capture dynamics in collisions between fullerene ions and rare gas atoms [J]. Chem Phys, 1998, 239(1): 299-308.
    Peng R F, Chu S J, Huang Y M, et al. Preparation of He@C60 and He2@C60 by an explosive method [J]. J Mater Chem, 2009, 19(22): 3602-3605.
    Bil A, Morrison C A. Modifying the fullerene surface using endohedral noble gas atoms: Density functional theory based molecular dynamics study of C70O3 [J]. J Phys Chem A, 2012, 116(13): 3413-3419.
    Weisman R B, Heymann D, Bachilo S M. Synthesis and characterization of themissingoxide of C60: [5, 6]-open C60O [J]. J Am Chem Soc, 2001, 123: 9720-9721.
    Zhang H C, Peng R F, Jin B, et al. Study on the reaction of C60 under shock wave [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 351-356. (in Chinese)
    张洪昌, 彭汝芳, 金波, 等. C60在冲击波下的反应研究 [J]. 高压物理学报, 2012, 26(3): 351-356.
    Ohno K, Maruyama Y, Esfarjani K, et al. Ab initio molecular dynamics simulations for collision between C60 and alkali-metal ions: A possibility of Li@C60[J]. Phys Rev Lett, 1996, 76(19): 3590-3593.
    Glotov A V, Campbell E E B. Inelastic, quasi-elastic and charge transfer scattering in C++60C60 collisions [J]. Chem Phys Lett, 2000, 327(1): 61-68.
    Tang Z C, Ren B, Huang R B, et al. Collapsed deposition of accelerated C60 beam on solid surface: (Ⅰ) Confocal Raman microscopic studies [J]. Acta Physico-Chimica Sinica, 1997, 13(6): 481-483. (in Chinese)
    唐紫超, 任斌, 黄荣彬, 等. C60离子束撞击固体表面的坍塌沉积: (Ⅰ) 共焦显微拉曼光谱研究 [J]. 物理化学学报, 1997, 13(6): 481-483.
    Tang Z C, Cai X W, Shi C H, et al. Collapsed deposition of accelerated C60 beam on solid surface: (Ⅱ) STM studies [J]. Acta Physico-Chimica Sinica, 1997, 13(10): 950-953. (in Chinese)
    唐紫超, 蔡雄伟, 施财辉, 等. C60离子束撞击固体表面的坍塌与沉积: (Ⅱ) 扫描隧道显微研究 [J]. 物理化学学报, 1997, 13(10): 950-953.
    Russo C J, Golovchenko J A. Atom-by-atom nucleation and growth of graphene nanopores [J]. PNAS, 2012, 109(16): 5953-5957.
    Nakai Y, Majima T, Mizuno T, et al. C60 fragmentation in charge-changing collisions with slow Au+ ions [J]. Phys Rev A, 2011, 83(5): 053201-053206.
    Kabir M, Mukherjee S, Saha-Dasgupta T. Substantial reduction of Stone-Wales activation barrier in fullerene [J]. Phys Rev B, 2011, 84(20): 205404-205410.
    Cao B P, Peres T, Lifshitz C, et al. Kinetic energy release of C+70 and its endohedral cation N@C+70: Activation energy for N extrusion [J]. Chem Eur J, 2006, 12(8): 2213-2221.
    VandeVondele J, Krack M, Mohamed F, et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach [J]. Comput Phys Commun, 2005, 167(2): 103-128.
    Liu L M, Krack M, Michaelides A. Density oscillations in a nanoscale water film on salt: Insight from ab initio molecular dynamics [J]. J Am Chem Soc, 2008, 130(5): 8572-8573.
    Liu L M, Krack M, Michaelides A. Interfacial water: A first principles molecular dynamics study of a nanoscale water film on salt [J]. J Chem Phys, 2009, 130(23): 234702-234713.
    Strachan A, van Duin A, Chakraborty D, et al. Shock waves in high-energy materials: The initial chemical events in nitramine RDX [J]. Phys Rev Lett, 2003, 91(9): 098301-098304.
    Dlott D D. Ultrafast spectroscopy of shock waves in molecular materials [J]. Annu Rev Phys Chem, 1999, 50(4): 251-278.
    Jakowski J, Irle S, Morokuma K. Collision-induced fusion of two C60 fullerenes: Quantum chemical molecular dynamics simulations [J]. Phys Rev B, 2010, 82(12): 125443-125449.
    Sohn W Y, Kim T W, Lee J S. Structure and energetics of C60O: A theoretical study [J]. J Phys Chem A, 2010, 114(4): 1939-1943.
    Zhang J, Fuhrer T, Fu W, et al. Nanoscale Fullerene compression of an yttrium carbide cluster [J]. J Am Chem Soc, 2012, 134(20): 8487-8493.
    Tachikawa H. Diffusion of the Li+ ion on C60: A DFT and molecular dynamics study [J]. J Phys Chem C, 2011, 115(42): 20406-20411.
    Cao B P, Peres T, Cross R J, et al. Unimolecular dissociations of C+70 and its noble gas endohedral cations Ne@C+70 and Ar@C+70: Cage-binding energies for C2 Loss [J]. J Phys Chem A, 2005, 109(45): 10257-10263.
    Korona T, Dodziuk H. Small molecules in C60 and C70: Which complexes could Be stabilized [J]. J Chem Theory Comput, 2011, 7(5): 1476-1483.
    Wang L, Liu B, Li H, et al. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks [J]. Science, 2012, 337(6096): 825-828.
    Murry R L, Strout D L, Odom G K, et al. Role of SP3 carbon and 7-membered rings in fullerene annealing and fragmentation [J]. Nature, 1993, 366: 665-667.
  • 加载中
计量
  • 文章访问数:  7134
  • HTML全文浏览量:  420
  • PDF下载量:  471
出版历程
  • 收稿日期:  2012-08-20
  • 修回日期:  2012-10-26
  • 发布日期:  2013-04-15

目录

    /

    返回文章
    返回