高压下典型小分子晶体的结构和行为

靳锡联 崔田

靳锡联, 崔田. 高压下典型小分子晶体的结构和行为[J]. 高压物理学报, 2013, 27(2): 188-198. doi: 10.11858/gywlxb.2013.02.004
引用本文: 靳锡联, 崔田. 高压下典型小分子晶体的结构和行为[J]. 高压物理学报, 2013, 27(2): 188-198. doi: 10.11858/gywlxb.2013.02.004
JIN Xi-Lian, CUI Tian. Structures and Properties in Typical Small-Molecule Crystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 188-198. doi: 10.11858/gywlxb.2013.02.004
Citation: JIN Xi-Lian, CUI Tian. Structures and Properties in Typical Small-Molecule Crystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 188-198. doi: 10.11858/gywlxb.2013.02.004

高压下典型小分子晶体的结构和行为

doi: 10.11858/gywlxb.2013.02.004
详细信息
    通讯作者:

    崔田 E-mail:cuitian@jlu.edu.cn

Structures and Properties in Typical Small-Molecule Crystals under High Pressure

  • 摘要: 高压能够引起凝聚态物质中原子微观结构的重新排列,形成新的电子分布状态,从而产生新材料和新特性。高压下典型分子体系呈现出了丰富的物理现象和物理性质,探索和发现这些高压下典型分子体系中的新结构及其行为,是高压物理研究重要且有意义的课题。通过对单质和小分子化合物两类体系的研究,说明了高压下典型分子单质I2、N2的结构和金属化行为;高压下典型分子化合物中碘仿、溴仿晶体的氢键和卤键的键合行为,以及氨硼烷晶体中存在的双氢键对分子集团转动动力学行为的影响等。高压下典型分子体系不同于常压下所表现出来的解离、重构和金属化等行为,为新结构的产生、新材料的探索以及新物理性质的发现提供了重要源泉。

     

  • Wigner E, Huntington H B. On the possibility of a metallic modification of hydrogen [J]. J Chem Phys, 1935, 3(12): 764.
    Wang X L, Tian F B, Wang L C, et al. Structural stability of polymeric nitrogen: A first-principles investigation [J]. J Chem Phys, 2010, 132(2): 024502.
    Bao G, Duan D F, Zhou D W, et al. A new high-pressure polar phase of crystalline bromoform: A first-principles study [J]. J Phys Chem B, 2010, 114(44): 13933-13939.
    Bao G, Duan D, Tian F, et al. Structural, electronic, and optical properties of crystalline iodoform under high pressure: A first-principles study [J]. J Chem Phys, 2011, 134(3): 034508.
    Fan J, Bao K, Jin X L, et al. How to get superhard MnB2: A first-principles study [J]. J Mater Chem, 2012, 22(34): 17630-17635.
    Wang L C, Bao K, Meng X, et al. Structural and dynamical properties of solid ammonia borane under high pressure [J]. J Chem Phys, 2011, 134(2): 024517.
    Zeng Q F, He Z, San X J, et al. A new phase of solid iodine with different molecular covalent bonds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4999-5001.
    Buzea C, Yamashita T. Review of the superconducting properties of MgB2 [J]. Supercond Sci Technol, 2001, 14(11): R115.
    Takemura K, Minomura S, Shimomura O, et al. Observation of molecular dissociation of iodine at high pressure by X-ray diffraction [J]. Phys Rev Lett, 1980, 45(23): 1881-1884.
    Fujii Y, Hase K, Ohishi Y, et al. Pressure-induced monatomic tetragonal phase of metallic iodine [J]. Solid State Commun, 1986, 59(2): 85-89.
    Fujii Y, Hase K, Hamaya N, et al. Pressure-induced face-centered-cubic phase of monatomic metallic iodine [J]. Phys Rev Lett, 1987, 58(8): 796-799.
    Hu J Z, Hemley J, Mao H K, et al. Optical, X-ray, and band-structure studies of iodine at pressures of several megabars [J]. Phys Rev B, 1994, 49(6): 3725-3733.
    Kenichi T, Kyoko S, Hiroshi F, et al. Modulated structure of solid iodine during its molecular dissociation under high pressure [J]. Nature, 2003, 423: 971-974.
    Kume T, Hiraoka T, Ohya Y, et al. High pressure Raman study of bromine and iodine: Soft phonon in the incommensurate phase [J]. Phys Rev Lett, 2005, 94(6): 065506.
    Sakamoto H, Shirai M, Suzuki N. Pressure effects on electronic structure and electron-lattice interaction of cubic phase of solid iodine [J]. J Phys Soc Jpn 1995, 64: 3860-3870.
    Sakamoto H, Oda T, Shirai M, et al. Application of Frozen-phonon method to lattice dynamics in FCC solid iodine [J]. J Phys Soc Jpn, 1996, 65: 489-495.
    Maheswari S U, Nagara H, Kusakabe K, et al. Ab-initio calculations of lattice dynamics and superconductivity in FCC lithium and iodine and BCC tellurium [J]. J Phys Soc Jpn, 2005, 74(12): 3227-3235.
    Shimizu K, Yamauchi T, Tamitani N, et al. The pressure-induced superconductivity of iodine [J]. J Supercond, 1994, 7(6): 921.
    Duan D F, Jin X L, Ma Y M, et al. Effect of nonhydrostatic pressure on superconductivity of monatomic iodine: An ab initio study [J]. Phys Rev B, 2009, 79(6): 064518.
    McMahan A K, LeSar R. Pressure dissociation of solid nitrogen under 1 Mbar [J]. Phys Rev Lett, 1985, 54(17): 1929-1932.
    Eremets M I, Gavriliuk A G, Trojan I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Mater, 2004, 3: 558-563.
    Zahariev F, Hu A, Hooper J, et al. Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation [J]. Phys Rev B, 2005, 72(21): 214108.
    Ludwig S, Osheroff D D. Field-induced structural aging in glasses at ultralow temperatures [J]. Phys Rev Lett, 2003, 91(10): 105501.
    Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
    Oganov A R, Glass C W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications [J]. J Chem Phys, 2006, 124(24): 244704.
    Zahariev F, Hooper J, Alavi S, et al. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations [J]. Phys Rev B, 2007, 75(14): 140101(R).
    Alemany M M G, Martins J L. Density-functional study of nonmolecular phases of nitrogen: Metastable phase at low pressure [J]. Phys Rev B, 2003, 68: 024110(1)-024110(4).
    Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
    Wang X L, Tian F B, Wang L, et al. Predicted novel metallic metastable phases of polymeric nitrogen at high pressures [J]. New J Phys, 2013, 15: 013010.
    Curtin D Y, Paul I C. Chemical consequences of the polar axis in organic solid-state chemistry [J]. Chem Rev, 1981, 81(6): 525-541.
    Zhang H, Wang X M, Zhang K C, et al. Functional crystals: Search criteria and design principles [J]. J Solid State Chem, 2000, 152(1): 191-198.
    Kenichi T, Kyoko S, Hiroshi F, et al. Modulated structure of solid iodine during its molecular dissociation under high pressure [J]. Nature, 2003, 423: 971-974.
    Duan D F, Liu Y H, Ma Y M, et al. Ab initio studies of solid bromine under high pressure [J]. Phys Rev B, 2007, 76(10): 104113.
    Dziubek K F, Katrusiak A. Polar symmetry in new high-pressure phases of chloroform and bromoform [J]. J Phys Chem B, 2008, 112(38): 12001-12009.
    Liu D, Lei W W, Wang K, et al. Compression and Probing C-HI hydrogen bonds of iodoform under high pressure by X-ray diffraction and raman scattering [J]. J Phys Chem B, 2009, 13(21): 7430-7434.
    Wang K, Duan D F, Wang R, et al. Pressure-induced phase transition in hydrogen-bonded supramolecular adduct formed by cyanuric acid and melamine [J]. J Phys Chem B, 2009, 113(44): 14719-14724.
    Wang L C, Tian F B, Feng W X, et al. Order-disorder phase transition and dissociation of hydrogen sulfide under high pressure: Ab initio molecular dynamics study [J]. J Chem Phys, 2010, 132(16): 164506.
    Berski S, Ciunik Z, Drabent K, et al. Dominant role of C-BrN halogen bond in molecular self-organization. Crystallographic and quantum-chemical study of schiff-base-containing triazoles [J]. J Phys Chem B, 2004, 108(33): 12327-12332.
    Awwadi F F, Willett R D, Peterson K A, et al. The nature of halogenhalogen synthons: Crystallographic and theoretical studies [J]. Chemistry-Europ J, 2006, 12(35): 8952-8960.
    Samoc A, Samoc M, Giermanska J, et al. Thermally stimulated depolarisation study of structural disorder in iodoform single crystals [J]. J Phys D: Appl Phys, 1985, 18(12): 2529.
    Calvert J G, Pitts J N. Experimental methods in photochemistry [C]//Photochemistry. New York: John Wiley Sons, Inc, 1966: 686-798.
    Samoс A, Samoс M, Sworakowski J, et al. Photoconductivity of crystalline iodoform I [J]. Molecul Crystals Liquid Crys, 1981, 78(1): 1-13.
    Bowden M E, Gainsford G J, Robinson W T. Room-temperature structure of ammonia borane [J]. Aust J Chem, 2007, 60(3): 149-153. [44] Yang J B, Lamsal J, Cai Q, et al. Structural evolution of ammonia borane for hydrogen storage [J]. Appl Phys Lett, 2008, 92(9): 091916 (1)-091916(3).
    Hess N J, Schenter G K, Hartman M R, et al. Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340 K [J]. J Phys Chem A, 2009, 113(19): 5723-5735.
    Klooster W T, Koetzle T F, Siegbahn P E M, et al. Study of the N-HH-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction [J]. J Am Chem Soc, 1999, 121(27): 6337-6343.
    Filinchuk Y, Nevidomskyy A H, Chernyshov D, et al. High-pressure phase and transition phenomena in ammonia borane NH3BH3 from X-ray diffraction, Landau theory, and ab initio calculations [J]. Phys Rev B, 2009, 79(21): 214111.
    Lin Y, Mao W L, Drozd V, et al. Raman spectroscopy study of ammonia borane at high pressure [J]. J Chem Phys, 2008, 129(23): 234509.
    Suenram R D, Lovas F J. Microwave spectrum, torsional barrier, and structure of BH3NH3 [J]. J Chem Phys, 1983, 78(1): 167.
    Parvanov V M, Schenter G K, Hess N J, et al. Materials for hydrogen storage: Structure and dynamics of borane ammonia complex [J]. Dalton Trans, 2008, 33: 4514-4522.
    Hessa N J, Hartmanb M R, Brownc Craig M, et al. Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane [J]. Chem Phys Lett, 2008, 459: 85-88.
    Penner G H, Chang Y C P, Hutzal J, et al. A deuterium NMR spectroscopic study of solid BH3NH3 [J]. Inorg Chem, 1999, 38(12): 2868-2873.
    Gunaydin-Sen O, Achey R, Dalal N S, et al. High resolution 15N NMR of the 225 K phase transition of ammonia borane (NH3BH3): Mixed order-disorder and displacive behavior [J]. J Phys Chem B, 2007, 111(4): 677-681.
  • 加载中
计量
  • 文章访问数:  6843
  • HTML全文浏览量:  412
  • PDF下载量:  591
出版历程
  • 收稿日期:  2013-04-05
  • 修回日期:  2013-04-05
  • 发布日期:  2013-04-15

目录

    /

    返回文章
    返回