激波作用下SF6气泡界面演化和射流发展的数值模拟

邹立勇 刘仓理 庞勇 罗喜胜 柏劲松 杨基明

邹立勇, 刘仓理, 庞勇, 罗喜胜, 柏劲松, 杨基明. 激波作用下SF6气泡界面演化和射流发展的数值模拟[J]. 高压物理学报, 2013, 27(1): 90-98. doi: 10.11858/gywlxb.2013.01.013
引用本文: 邹立勇, 刘仓理, 庞勇, 罗喜胜, 柏劲松, 杨基明. 激波作用下SF6气泡界面演化和射流发展的数值模拟[J]. 高压物理学报, 2013, 27(1): 90-98. doi: 10.11858/gywlxb.2013.01.013
ZOU Li-Yong, LIU Cang-Li, PANG Yong, LUO Xi-Sheng, BAI Jin-Song, YANG Ji-Ming. A Numerical Study on Interface Evolution and Jet Development of a Shocked SF6 Gas Bubble[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90-98. doi: 10.11858/gywlxb.2013.01.013
Citation: ZOU Li-Yong, LIU Cang-Li, PANG Yong, LUO Xi-Sheng, BAI Jin-Song, YANG Ji-Ming. A Numerical Study on Interface Evolution and Jet Development of a Shocked SF6 Gas Bubble[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90-98. doi: 10.11858/gywlxb.2013.01.013

激波作用下SF6气泡界面演化和射流发展的数值模拟

doi: 10.11858/gywlxb.2013.01.013
详细信息
    通讯作者:

    邹立勇 E-mail:zly@caep.ac.cn

A Numerical Study on Interface Evolution and Jet Development of a Shocked SF6 Gas Bubble

  • 摘要: 数值研究了平面激波冲击氮气环境中SF6气泡界面的Richtmyer-Meshkov不稳定性,重点关注其中的激波聚焦及射流的产生和发展过程。在入射激波马赫数为1.23的情况下,给出了压力、密度、数值纹影和涡量等物理量的演化图像,定量分析了流场中压力最大值、密度最大值、射流速度、环量和斜压力矩随时间的变化关系。计算结果表明,平面激波冲击SF6气泡过程有很强的聚能效应,在气泡内部靠近下游极点处发生激波近似理想聚焦和点爆炸现象,直接导致出现二次波系以及向下游运动的细长射流结构。相比入射激波,二次波系产生斜压力矩和涡量的能力要弱得多。

     

  • Richtmyer R D. Taylor instability in shock acceleration of compressible fluids [J]. Commun Pur Appl Math, 1960, 13(2): 297-319.
    Meshkov E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dyn, 1969, 4(5): 101-104.
    Winkler K H A, Chalmers J W, Hodson S W, et al. A numerical laboratory [J]. Phys Today, 1987, 40(10): 28-37.
    Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. J Fluid Mech, 1987, 181: 41-76.
    Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas [J]. J Fluid Mech, 1988, 189: 23-51.
    Quirk J J, Karni S. On the dynamics of a shock-bubble interaction [J]. J Fluid Mech, 1996, 318: 129-163.
    Cowperthwaite N. The interaction of a plane shock and a dense spherical inhomogeneity [J]. Phys D, 1989, 37(1/2/3): 264-269.
    Zabusky N J, Zeng S M. Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-spherical fast/slow bubble interactions [J]. J Fluid Mech, 1998, 362: 327-346.
    Giordano J, Burtschell Y. Richtmyer-Meshkov instability induced by shock-bubble interaction: Numerical and analytical studies with experimental validation [J]. Phys Fluids, 2006, 18(3): 036102.
    Niederhaus J H J, Greenough J A, Oakley J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction [J]. J Fluid Mech, 2008, 594: 85-124.
    Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions [J]. Annu Rev Fluid Mech, 2011, 43: 117-140.
    Li Q B, Fu S, Xu K. A compressible Navier-Stokes flow solver with scalar transport [J]. J Comput Phys, 2005, 204(2): 692-714.
    Tian B L, Fu D X, Ma Y W. Effects of adiabatic exponent on Richtmyer Meshkov instability [J]. Chin Phys Lett, 2004, 21(9): 1770-1772.
    Bai J S, Zou L Y, Wang T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders [J]. Phys Rev E, 2010, 82: 056318.
    Yan C L, Sun D J, Yin X Y, et al. Numerical simulations of Richtmyer-Meshkov instability [J]. Chinese Journal of Computation Physics, 2001, 18(1): 27-32. (in Chinese)
    严长林, 孙德军, 尹协远, 等. Richtmyer-Meshkov不稳定性的数值模拟 [J]. 计算物理, 2001, 18(1): 27-32.
    Sun M, Takayama K. Conservative smoothing on an adaptive quadrilateral grid [J]. J Comput Phys, 1999, 150(1): 143-180.
    Sun M. Numerical and experimental studies of shock wave interaction with bodies [D]. Sendai, Japan: Tohoku University, 1998.
    Sun M, Yada K, Jagadeesh G, et al. A study of shock wave interaction with a rotating cylinder [J]. Shock Waves, 2003, 12(6): 479-485.
    Sun M, Takayama K. A holographic interferometric study of shock wave focusing in a circular reflector [J]. Shock Waves, 1996, 6(6): 323-336.
    Luo X. Unsteady flows with phase transition [D]. Eindhoven, Netherlands: Eindhoven University of Technology, 2004.
    Luo X, Prast B, van Dongen M E H, et al. On phase transition in compressible flows: Modelling and validation [J]. J Fluid Mech, 2006, 548: 403-430.
    Fan M R, Zhai Z G, Si T, et al. Numerical simulations of interface with different shape accelerated by a planar shock [J]. Scientia Sinica G, 2011, 41(7): 862-869. (in Chinese)
    范美如, 翟志刚, 司廷, 等. 激波与不同形状界面作用的数值模拟 [J]. 中国科学G辑, 2011, 41(7): 862-869.
    Zhai Z, Si T, Luo X, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave [J]. Phys Fluids, 2011, 23: 084104.
    Zhai Z G, Si T, Luo X S, et al. On the evolution of SF6 spherical gas interface accelerated by planar shock wave [C]//Procedings of the 14th Chinese National Symposium on Shock Waves, Huangshan, 2010: 371-376. (in Chinese)
    翟志刚, 司廷, 罗喜胜, 等. 平面激波作用下SF6球形界面变形与发展的研究 [C]//第14届全国激波与激波管学术会议论文集, 黄山, 2010: 371-376.
    Sedov L I. Similarity and Dimensional Methods in Mechanics [M]. New York: Academic Press, 1959.
    Schilling O, Latini M, Don W S. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability [J]. Phys Rev E, 2007, 76(2): 026319.
  • 加载中
计量
  • 文章访问数:  7298
  • HTML全文浏览量:  307
  • PDF下载量:  365
出版历程
  • 收稿日期:  2011-08-15
  • 修回日期:  2011-11-14
  • 发布日期:  2013-02-15

目录

    /

    返回文章
    返回