氢化镁储氢型乳化炸药的爆炸特性研究

程扬帆 马宏昊 沈兆武

程扬帆, 马宏昊, 沈兆武. 氢化镁储氢型乳化炸药的爆炸特性研究[J]. 高压物理学报, 2013, 27(1): 45-50. doi: 10.11858/gywlxb.2013.01.006
引用本文: 程扬帆, 马宏昊, 沈兆武. 氢化镁储氢型乳化炸药的爆炸特性研究[J]. 高压物理学报, 2013, 27(1): 45-50. doi: 10.11858/gywlxb.2013.01.006
CHENG Yang-Fan, MA Hong-Hao, SHEN Zhao-Wu. Detonation Characteristics of Emulsion Explosives Sensitized by MgH2[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 45-50. doi: 10.11858/gywlxb.2013.01.006
Citation: CHENG Yang-Fan, MA Hong-Hao, SHEN Zhao-Wu. Detonation Characteristics of Emulsion Explosives Sensitized by MgH2[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 45-50. doi: 10.11858/gywlxb.2013.01.006

氢化镁储氢型乳化炸药的爆炸特性研究

doi: 10.11858/gywlxb.2013.01.006
详细信息
    通讯作者:

    沈兆武 E-mail:zwshen@ustc.edu.cn

Detonation Characteristics of Emulsion Explosives Sensitized by MgH2

  • 摘要: 通过理论计算和水下爆炸实验,初步研究了MgH2敏化储氢型乳化炸药的爆炸特性和爆轰反应机理。结果表明:与玻璃微球敏化的乳化炸药相比,MgH2敏化的乳化炸药水下爆炸的冲击波超压、比冲量、比冲击波能、比气泡能及水下爆炸比总能量显著增加,其中冲击波超压和水下爆炸总能量分别增加了20.5%和31.0%。MgH2储氢型乳化炸药的爆轰机理与玻璃微球敏化乳化炸药不同,MgH2在乳化炸药中起到了敏化剂和含能材料的双重作用,即MgH2在乳化基质中水解产生均匀分布的氢气泡,起到了敏化作用,同时氢气参与爆炸反应,提高了炸药的爆炸能量和做功能力。

     

  • Medvedev A E, Fomin V M, Reshetnyak A Y. Mechanism of detonation of emulsion explosives with microballoons [J]. Shock Waves, 2008, 18(2): 107-115.
    Wang X G. Emulsion Explosives [M]. Beijing: Metallurgical Industry Press, 1993: 12. (in Chinese)
    汪旭光. 乳化炸药 [M]. 北京: 冶金工业出版社, 1993: 12.
    Zhang H, Xie X H, Guo Z R, et al. Effect of aluminum powder content on performance of emulsion explosive [J]. Chinese Journal of Energetic Materials, 2008, 16(6): 738-740. (in Chinese)
    张虎, 谢兴华, 郭子如, 等. 铝粉含量对乳化炸药性能影响 [J]. 含能材料, 2008, 16(6): 738-740.
    Lu M, L C X. The mathematical model for the formulation design of emulsion explosive [J]. Explosion and Shock Waves, 2002, 22(4): 338-342. (in Chinese)
    陆明, 吕春绪. 乳化炸药配方设计的数学模型研究 [J]. 爆炸与冲击, 2002, 22(4): 338-342.
    Zhou J X, Yu G H, Li P, et al. Experimental study of the aluminized explosive RDX/Al explosion under water [J]. Blasting, 2005, 22(2): 4-7. (in Chinese)
    周俊祥, 于国辉, 李澎, 等. RDX/Al含铝炸药水下爆炸实验研究 [J]. 爆破, 2005, 22(2): 4-7.
    Feng X S, Zhao S X, Diao X Q, et al. Experimental research of underwater energy of explosive containing boron/metal [J]. Chinese Journal of Explosives Propellants, 2009, 32(5): 21-24. (in Chinese)
    封雪松, 赵省向, 刁小强, 等. 含硼金属炸药水下能量的实验研究 [J]. 火炸药学报, 2009, 32(5): 21-24.
    Bjarnholt G. Explosives expansion works in underwater detonations [C]//Proceedings of the 6th Symposium on Detonation, San Diego, USA, 1976: 540-550.
    Chi J C, Ma B. Underwater explosion wave by a spherical charge of composition B-3 [J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 199-204. (in Chinese)
    池家春, 马冰. TNT/RDX(40/60)炸药球水中爆炸波研究 [J]. 高压物理学报, 1999, 13(3): 199-204.
    Wang W, Wang J L, Guo W, et al. Influence of Al content on the detonation pressure and detonation velocity of RDX-based aluminized explosive [J]. Chinese Journal of Explosives Propellants, 2010, 33(1): 15-18. (in Chinese)
    王玮, 王建灵, 郭炜, 等. 铝含量对RDX基含铝炸药爆压和爆速的影响 [J]. 火炸药学报, 2010, 33(1): 15-18.
    Liu L Q. Use of aluminum in perforating and stimulating a subterranean formation and other engineering applications: USA, 20030037692 [P]. 2003-02-27.
    Tan J M. Chemical reaction rate model and theoretical analysis of overdriven detonation about insensitive high explosives [D]. Changsha: University of Science and Technology of China, 2007. (in Chinese)
    谭江明. 钝感炸药的化学反应速率和超压爆轰理论研究 [D]. 长沙: 国防科学技术大学, 2007.
    Kim K. Development of a model of reaction rates in shocked multicomponent explosives [C]//Proceedings of the 10th International Symposium on Detonation, Portland, USA, 1989: 593-603.
    Mader C L. Numerical Modeling of Explosives and Propellants [M]. New York, USA: Chemical Rubber Company Press, 1998.
  • 加载中
计量
  • 文章访问数:  7486
  • HTML全文浏览量:  552
  • PDF下载量:  545
出版历程
  • 收稿日期:  2012-06-17
  • 修回日期:  2012-10-09
  • 发布日期:  2013-02-15

目录

    /

    返回文章
    返回