铝热剂反应性冲击热点分析

王新征 张松林 张庆明 秦志桂 陈旻 李文杰

王新征, 张松林, 张庆明, 秦志桂, 陈旻, 李文杰. 铝热剂反应性冲击热点分析[J]. 高压物理学报, 2012, 26(6): 665-673. doi: 10.11858/gywlxb.2012.06.011
引用本文: 王新征, 张松林, 张庆明, 秦志桂, 陈旻, 李文杰. 铝热剂反应性冲击热点分析[J]. 高压物理学报, 2012, 26(6): 665-673. doi: 10.11858/gywlxb.2012.06.011
WANG Xin-Zheng, ZHANG Song-Lin, ZHANG Qing-Ming, QIN Zhi-Gui, CHEN Min, LI Wen-Jie. Analysis of Reactive Hot Spot for Thermite under Shock Waves[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 665-673. doi: 10.11858/gywlxb.2012.06.011
Citation: WANG Xin-Zheng, ZHANG Song-Lin, ZHANG Qing-Ming, QIN Zhi-Gui, CHEN Min, LI Wen-Jie. Analysis of Reactive Hot Spot for Thermite under Shock Waves[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 665-673. doi: 10.11858/gywlxb.2012.06.011

铝热剂反应性冲击热点分析

doi: 10.11858/gywlxb.2012.06.011
详细信息
    通讯作者:

    王新征 E-mail:wxzhmalan@163.com

Analysis of Reactive Hot Spot for Thermite under Shock Waves

  • 摘要: 采用激光粒度扫描仪测量了二元混合物铝热剂(Al+Fe2O3)原料的粒径分布,在电子显微镜下观察了铝颗粒、氧化铁颗粒的颗粒形状及两者按照化学配比混合后的颗粒接触状态。综合粒径分布和反应体系的化学配比关系,得到两种反应物的特征粒径和混合物的颗粒布局。根据特征粒径和颗粒布局,建立了该反应体系的等效细观模型,该细观模型能够保证得到与实际颗粒体系相一致的具有统计意义的孔穴结构。采用无网格粒子方法,数值模拟了铝热剂体系在不同冲击速度作用下,基本氧化铁颗粒排列形成的热点特征。研究表明,氧化铁三颗粒紧密排列的模式为形成单独热点的最基本排列,在平面冲击作用下,二元不同粒径的含能材料混合物形成热点的尺寸由初始孔穴尺寸确定,而热点温度受冲击速度影响较大。采用轻气炮对不同密度和配比的铝热剂进行了冲击点火实验,并将测量和数值计算结果进行了对比分析,结果表明,两者的定性结论吻合较好。

     

  • Feng C G. Theory of Heat Ignition [M]. Changchun: Jilin Science and Technology Press, 1991. (in Chinese)
    冯长根. 热点火理论 [M]. 长春: 吉林科学技术出版社, 1991.
    Meyers M A, Murr L E. Shock-Wave and High-Strain-Rate Phenomena in Materials [M]. New York: Marcel Dekker, Inc, 1992: 233-492, 783-794.
    Thadhani N, Chen E. Shock Synthesis of Materials [M]. Atlanta: Georgia Institute of Technology, 1994.
    Kang J, Butler P B. A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials [J]. Combust Flame, 1992, 89: 117-139.
    Bourne N K. On the collapse of cavities [J]. Shock Waves, 2002, 11: 447-455.
    Dubnov L V, Sukhikh V A. On the nature of mechanically induced hot spots in condensed explosives [J]. Combustion, Explosion, and Shock Waves, 1971, 7(1): 123-125.
    Burkina R S, Vilyunov V N. Initiation of chemical reaction at a Hot Spot [J]. Combustion, Explosion, and Shock Waves, 1980, 16(4): 423-426.
    Knyazeva A G. Hot-spot thermal explosion in deformed solids [J]. Combustion, Explosion, and Shock Waves, 1993, 29(4): 419-428.
    Bourne N K, Field J E. Explosive ignition by the collapse of cavities [J]. Math Phys Eng Sci, 1999, 455(1987): 2411-2426.
    Bourne N K, Milne A M. The temperature of a shock-collapsed cavity [J]. Math Phys Eng Sci, 2003, 459(2036): 1851-1861.
    Maiden D E, Nutt G L. Hot-spot model for calculating the threshold for shock initiation pyrotechnic mixtures [A]//Proceeding of the Eleventh International Pyrotechnics Seminar [C]. California: Lawrence Livermore National Lab, 1986: 813.
    Boslough M B. A Thermochemical model for shock-induced reactions (heat detonations) in solids [J]. J Chem Phys, 1990, 92(3): 1839-1848.
    Mutz A H. Heterogeneous shock energy deposition in shock wave consolidation of metal powders [D]. California: California Institute of Technology, 1991.
    Boslough M B, Graham A. Submicrosecond shock-induced chemical reactions in solids first real-time observations [J]. Chem Phys Lett, 1985, 21(4-5): 446-452.
    Hornig H, Kruy J W. Shock ignition of pyrotechnic heat powders [A]//Proceeding of the Eleventh International Pyrotechnics Seminar [C]. Vail, Colorado, 1986: 699-719.
    Wang J X. Research of micro-mechanism of energy deposition in explosive consolidation of powders [D]. Dalian: Dalian University of Technology, 2005. (in Chinese)
    王金相. 爆炸粉末烧结的细观沉能机制研究 [D]. 大连: 大连理工大学, 2005.
    Zhang D L, Wang X L. The numerical research of the effects of material parameters on powders explosive consolidation [J]. Explosion and Shock Waves, 1996, 16(2): 105-110. (in Chinese)
    张德良, 王晓林. 粉末爆炸烧结材料参数效应数值研究 [J]. 爆炸与冲击, 1996, 16(2): 105-110.
    Zhang D L. Numerical simulation of explosive compaction of powder [J]. Advances in Mechanics, 1994, 24(1): 37-56. (in Chinese)
    张德良. 粉末材料爆炸压实数值模拟 [J]. 力学进展, 1994, 24(1): 37-56.
    Willamson R L. Parametric studies of dynamic powder consolidation using a particle-level numerical model [J]. J Appl Phys, 1990, 68(3): 1287-1296.
    Meyers M A, Benson D J. Shock consolidation: Microstructurally-based analysis and computational modeling [J]. Acta Mater, 1999, 47(7): 2089-2108.
    Gao J X, Shao B H, Zhang K. A study of the mechanism of consolidating metal powder under explosive-implosive shock waves [J]. J Appl Phys, 1991, 69(11): 7547-7555.
    Bendson M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Comput Meth Appl Mech Eng, 1988, 71: 197-224.
    Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strain rate, temperatures and pressures [J]. Eng Fract Mech, 1985, 21(1): 31-48.
    Johnson G R, Holmquist T J. Strain-rate effects for high-strain-rate computations [J]. J Phys, Ⅳ France, 2006, 134: 391-396.
    Snow C L, Lee C R, Shi Q, et al. Size-dependence of the heat capacity and thermodynamic properties of hematite (-Fe2O3) [J]. J Chem Thermodyn, 2010, 42(9): 1142-1151.
    Marsh S P. LASL Shock Hugoniot Data [Z]. Berkeley, CA: University of California Press, 1980: 166.
  • 加载中
计量
  • 文章访问数:  6818
  • HTML全文浏览量:  363
  • PDF下载量:  529
出版历程
  • 收稿日期:  2011-04-11
  • 修回日期:  2012-03-09
  • 发布日期:  2012-12-15

目录

    /

    返回文章
    返回