超高速正撞击溅射物实验与仿真研究

郑伟 庞宝君 彭科科 林敏 傅翔

郑伟, 庞宝君, 彭科科, 林敏, 傅翔. 超高速正撞击溅射物实验与仿真研究[J]. 高压物理学报, 2012, 26(6): 621-626. doi: 10.11858/gywlxb.2012.06.004
引用本文: 郑伟, 庞宝君, 彭科科, 林敏, 傅翔. 超高速正撞击溅射物实验与仿真研究[J]. 高压物理学报, 2012, 26(6): 621-626. doi: 10.11858/gywlxb.2012.06.004
ZHENG Wei, PANG Bao-Jun, PENG Ke-Ke, LIN Min, FU Xiang. Hypervelocity Impact Experiment and Simulation for Ejecta[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 621-626. doi: 10.11858/gywlxb.2012.06.004
Citation: ZHENG Wei, PANG Bao-Jun, PENG Ke-Ke, LIN Min, FU Xiang. Hypervelocity Impact Experiment and Simulation for Ejecta[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 621-626. doi: 10.11858/gywlxb.2012.06.004

超高速正撞击溅射物实验与仿真研究

doi: 10.11858/gywlxb.2012.06.004
详细信息
    通讯作者:

    郑伟 E-mail:zhengwei19862008@126.com

Hypervelocity Impact Experiment and Simulation for Ejecta

  • 摘要: 随着人类航天活动日益频繁,由微流星体和空间微小碎片超高速撞击航天器表面反溅生成的溅射物,对空间碎片环境的影响将越来越大。利用2017-T4铝合金球弹丸超高速正撞击5A06铝合金靶板进行了地面模拟实验与数值仿真计算,研究了反溅碎片特性参数,其中包括溅射物的平均速度、平均尺寸、平均溅射角,为空间碎片溅射物模型的建立奠定基础。采用多元回归方法,确定了溅射物平均速度与弹丸速度、弹丸尺寸之间的函数关系。研究表明,利用光滑粒子法(SPH)进行数值仿真计算,可以有效模拟溅射物平均尺寸、平均速度、平均溅射角;溅射物平均速度随弹丸速度、弹丸尺寸的增加而增加;溅射物基本呈圆锥形反溅,溅射物平均溅射角在41左右,基本不受弹丸速度、弹丸尺寸的影响。

     

  • Rival M, Mandeville J C. Modeling of ejecta produced upon hypervelocity impacts [J]. Space Debris, 1999, 1: 45-57.
    Siguier J M, Mandeville J C. Test procedures to evaluate spacecraft materials ejecta upon hypervelocity impact [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(6): 969-974.
    Mandeville J C. Characterisation of ejecta from HVI on spacecraft outer surfaces [R]. Germany: The European Space Operations Centre, 2009.
    Ma Z T. Smoothed particle hydrodynamics method and behavior of aluminum foams under hypervelocity impact [D]. Harbin: Harbin Institute of Technology, 2008: 82-100. (in Chinese)
    马志涛. 光滑质点法与泡沫铝空间碎片防护结构研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008: 82-100.
    Guan G S, Pang B J, Ha Y, et al. Damage of Al-whipple shield rear wall caused by hypervelocity impact of Al-spheres [J]. Acta Armamentarii, 2007, 28(1): 94-100. (in Chinese)
    管公顺, 庞宝君, 哈跃, 等. 铝球弹丸超高速正撞击铝Whipple防护结构舱壁的损伤分析 [J]. 兵工学报, 2007, 28(1): 94-100.
    Nakamura A M, Fujiwara A, Kadono T. Velocity of finer fragments from impact [J]. Planet Space Sci, 1994, 42(12): 1043-1052.
    Yamamoto S, Nakamura A M. Velocity measurements of impact ejecta from regolith targets [J]. Icarus, 1997, 128: 160-170.
    Piekutowski A J. Formation and description of debris cloud produced by hypervelocity impact, NASA-CR-4707 [R]. USA: NASA Johnson Space Center, 1996.
    Walsh J M, Rice M H, McQueen R G, et al. Shock-wave compression of twenty-seven metals, equation of state of metals [J]. Phys Rev, 1957, 108(2): 196-216.
    Johnson G R, Cook W H. A constitutive model and data for materials subjected to large strains, high strain rates and high temperatures [A]//Proceeding of the Seventh International Symposium on Ballistics [C]. The Hague, The Netherlands, 1983: 541-547.
    Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strain rate [J]. J Appl Phys, 1980, 51(3): 1498.
    Christiansen E L. Shielding sizing and response equations, NASA-TM-105527 [R]. USA: NASA Johnson Space Center, 1991.
  • 加载中
计量
  • 文章访问数:  7509
  • HTML全文浏览量:  444
  • PDF下载量:  489
出版历程
  • 收稿日期:  2011-03-11
  • 修回日期:  2011-04-09
  • 发布日期:  2012-12-15

目录

    /

    返回文章
    返回