食品微生物对超高压处理的逆境响应

张静 赵凤 胡小松 廖小军

张静, 赵凤, 胡小松, 廖小军. 食品微生物对超高压处理的逆境响应[J]. 高压物理学报, 2012, 26(3): 343-350. doi: 10.11858/gywlxb.2012.03.016
引用本文: 张静, 赵凤, 胡小松, 廖小军. 食品微生物对超高压处理的逆境响应[J]. 高压物理学报, 2012, 26(3): 343-350. doi: 10.11858/gywlxb.2012.03.016
ZHANG Jing, ZHAO Feng, HU Xiao-Song, LIAO Xiao-Jun. Stress Response of Food Microorganisms under High Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 343-350. doi: 10.11858/gywlxb.2012.03.016
Citation: ZHANG Jing, ZHAO Feng, HU Xiao-Song, LIAO Xiao-Jun. Stress Response of Food Microorganisms under High Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 343-350. doi: 10.11858/gywlxb.2012.03.016

食品微生物对超高压处理的逆境响应

doi: 10.11858/gywlxb.2012.03.016
详细信息
    通讯作者:

    廖小军 liaoxjun@hotmail.com

Stress Response of Food Microorganisms under High Hydrostatic Pressure

  • 摘要: 超高压(High Hydrostatic Pressure,HHP)作为一种非热杀菌技术,在食品工业中有着很广泛的应用,与传统的热加工处理相比,在保持食品品质、杀菌、钝酶等方面都有其明显的优势。通过对国内外相关文献的分析,对HHP处理后处于亚致死状态食品微生物的细胞膜、遗传与结构物质、机体代谢等方面,以及大部分食品微生物在应对外界的多种刺激时而进行的普遍性调控机制的研究进行了总结,探讨了经过HHP处理后处于亚致死状态的食品微生物在逆境下存活的应激反应。

     

  • Zhou L Y, Liao H M, Hu X S, et al. Fundamental issues of non-thermal processing in food [J]. Food Science, 2010, 31(5): 328-333. (in Chinese)
    周林燕, 廖红梅, 胡小松, 等. 食品非热杀菌研究中的科学问题分析 [J]. 食品科学, 2010, 31(5): 328-333.
    Gross M, Jaenicke R. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes: A review of proteins under pressure [J]. Eur J Biochem, 1994, 221(2): 617-630.
    van den Broeck I, Ludikhuyze L, Weemaes C, et al. Kinetics for isobaric-isothermal degradation of L-ascorbic acid [J]. J Agric Food Chem, 1998, 46(5): 2001-2006.
    Oey I, Verlinde P, Hendrickx M, et al. Temperature and pressure stability of L-ascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: A kinetic study [J]. Eur Food Res Technol, 2006, 223(1): 71-77.
    Cheftel J C, Culioli J. Effects of high pressure on meat: A review [J]. Meat Science, 1997, 46(3): 211-236.
    Brown A, Skanes I, Morrow M R. Pressure induced ordering in mixed-lipid bilayers [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 69(1): 011913(1)-011913(9).
    Ananta E, Knorr D. Comparison of inactivation pathways of thermal or high pressure inactivated lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis [J]. Food Microbiol, 2009, 26(5): 542-546.
    Tauscher B. Pasteurization of food by hydrostatic high pressure: Chemical aspects [J]. Zeitschrift fr Lebensmitteluntersuchung und -Forschung A, 1995, 200(1): 3-13.
    Ritz M, Pilet M F, Jugiau F, et al. Inactivation of Salmonella typhimurium and Listeria monocytogenes using high-pressure treatments: Destruction or sublethal stress? [J]. Lett Appl Microbiol, 2006, 42(4): 357-362.
    Singer S J, Garth L N. The fluid mosaic model of the structure of cell membranes [J]. Science New Series, 1972, 175(4023): 720-731.
    Braganza L F, Worcester D L. Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure [J]. Biochemistry, 1986, 25(23): 7484-7488.
    Hbner W, Wong P T T, Mantsch H H. The effect of hydrostatic pressure on the bilayer structure of phosphatidylcholines containing -cyclohexyl fatty acyl chains [J]. Biochim Biophys, 1990, 1027(3): 229-237.
    Molina-Garcia A D. The effect of hydrostatic pressure on biological systems [J]. Biotechnol Genet Eng Rev, 2002, 19: 3-54.
    Sahara T, Goda T, Ohgiva S. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature [J]. J Biol Chem, 2002, 277(51): 50015-50021.
    Fernandes P M B, Domitrovic T, Kao C M, et al. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure [J]. FEBS Lett, 2004, 556(1-3): 153-160.
    Desvaux M, Hebraud M. The protein secretion systems in listeria: Inside out bacterial virulence [J]. FEMS Microbiol Rev, 2006, 30(5): 774-805.
    Wouters J A, Sanders J W, Kok J, et al. Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363 [J]. Microbiology, 1998, 144: 2885-2893.
    Welch T J, Farewell A, Neidhardt F C, et al. Stress response of Escherichia coli to elevated hydrostatic pressure [J]. J Bacteriol, 1993, 175(22): 7170-7177.
    Drews O, Weiss W, Reil G, et al. High pressure effects step-wise altered protein expression in Lactobacillus sanfranciscensis [J ]. Proteomics, 2002, 2(6): 765-774.
    Aertsen A, Vanoirbeek K, de Spiegeleer P, et al. Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli [J]. Appl Environ Microbiol, 2004, 70(5): 2660-2666.
    Hrmann S, Scheyhing C, Behr J, et al. Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451T [J]. Proteomics, 2006, 6(6): 1878-1885.
    Iwahashi H, Shimizu H, Odani M, et al. Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae [J]. Extremophiles, 2003, 7(4): 291-298.
    Ishii A, Oshima T, Sato T, et al. Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure [J]. Extremophiles, 2005, 9(1): 65-73.
    Malone A S, Chung Y K, Yousef A E. Genes of Escherichia coli O157: H7 that are involved in high-pressure resistance [J]. Appl Environ Microbiol, 2006, 72(4): 2661-2671.
    Bowman J P, Claudio R, Bittencourt, et al. Differential gene expression of Listeria monocytogenes during high hydrostatic pressure processing [J]. Microbiology, 2008, 154: 462-475.
    Gao H, Aronson A I. The delta subunit of RNA polymerase functions in sporulation [J]. Curr Microbiol, 2004, 48(6): 401-404.
    Lopez de Saro F J, Yoshikawa N, Helmann J D. Expression, abundance, and RNA polymerase binding properties of the delta factor of bacillus subtilis [J]. J Biol Chem, 1999, 274(22): 15953-15958.
    Seepersaud R, Needham R H V, Kim C S, et al. Abundance of the subunit of RNA polymerase is linked to the virulence of Streptococcus agalactiae [J]. J Bacteriol, 2006, 188(6): 2096-2105.
    Juang Y L, Helmann J D. Pathway of promoter melting by bacillus subtilis RNA polymerase at a stable RNA promoter: Effects of temperature, delta protein, and sigma factor mutations [J]. Biochemistry, 1995, 34(26): 8465-8473.
    Miura T, Minegishi H, Usami R, et al. Systematic Analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces Cerevisiae [J]. Extremophiles, 2006, 10(4): 279-284.
    Jiang W, Hou Y, Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone [J]. J Biol Chem, 1997, 272(1): 196-202.
    Semrad K, Green R, Schroeder R. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli [J]. RNA, 2004, 10: 1855-1860.
    Bartlett D H. Pressure effects on in vivo microbial processes [J]. Biochim Biophys Acta, 2002, 1595(1-2): 367-381.
    Aertsen A, van Houdt R, Vanoirbeek K, et al. An SOS response induced by high pressure in Escherichia coli [J]. Bacteriol, 2004, 186(18): 6133-6141.
    Barciszewski J, Jurczak J, Porowski S, et al. The role of water structure in conformational changes of nucleic acids in ambient and high-pressure conditions [J]. Eur J Biochem, 1999, 260(2): 293-307.
    Aertsen A, Michiels C W. Mrr instigates the SOS response after high pressure stress in Escherichia coli [J]. MolMicrobiol, 2005, 58(5): 1381-1391.
  • 加载中
计量
  • 文章访问数:  7189
  • HTML全文浏览量:  361
  • PDF下载量:  646
出版历程
  • 收稿日期:  2011-03-04
  • 修回日期:  2011-07-13
  • 发布日期:  2012-06-15

目录

    /

    返回文章
    返回