温压协同处理黑莓-葡萄糖苷酶失活动力学研究

魏本喜 马永昆 马善丽 严蕊 张龙 白洁

魏本喜, 马永昆, 马善丽, 严蕊, 张龙, 白洁. 温压协同处理黑莓-葡萄糖苷酶失活动力学研究[J]. 高压物理学报, 2012, 26(3): 281-288. doi: 10.11858/gywlxb.2012.03.006
引用本文: 魏本喜, 马永昆, 马善丽, 严蕊, 张龙, 白洁. 温压协同处理黑莓-葡萄糖苷酶失活动力学研究[J]. 高压物理学报, 2012, 26(3): 281-288. doi: 10.11858/gywlxb.2012.03.006
WEI Ben-Xi, MA Yong-Kun, MA Shan-Li, YAN Rui, ZHANG Long, BAI Jie. Inactivation Kinetics of Blackberry -Glucosidase by Combined High Hydrostatic Pressure and Temperature Treatments[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 281-288. doi: 10.11858/gywlxb.2012.03.006
Citation: WEI Ben-Xi, MA Yong-Kun, MA Shan-Li, YAN Rui, ZHANG Long, BAI Jie. Inactivation Kinetics of Blackberry -Glucosidase by Combined High Hydrostatic Pressure and Temperature Treatments[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 281-288. doi: 10.11858/gywlxb.2012.03.006

温压协同处理黑莓-葡萄糖苷酶失活动力学研究

doi: 10.11858/gywlxb.2012.03.006
详细信息
    通讯作者:

    马永昆 mayongkun@ujs.edu.cn

Inactivation Kinetics of Blackberry -Glucosidase by Combined High Hydrostatic Pressure and Temperature Treatments

  • 摘要: 以黑莓-葡萄糖苷酶为对象,研究其温压协同条件下的失活动力学规律,可为超高压食品处理技术的工业化和花色苷的保留提供有力的技术支持。实验压力为300~600 MPa,温度为35~55 ℃。结果表明:-葡萄糖苷酶在温压协同条件下的失活过程为两个阶段,第一阶段用瞬时失活值描述,压力和温度影响其大小,不受保压时间影响;第二阶段将-葡萄糖苷酶分为稳定部分和敏感部分,-葡萄糖苷酶的失活过程用双相一级反应动力学模型描述,其失活速率常数随温度、压力的升高而增大。敏感部分和稳定部分在400 MPa、55 ℃条件下,失活速率常数KL和KS分别为2.777和0.047 min-1,二者失活90%所需时间DL和DS分别为0.83和49.1 min。在400 MPa条件下,敏感部分的D值减少90%所需增加的温度TZ和活化能Ea分别为23.36 ℃和81.95 kJ/mol;在45 ℃条件下D值减少90%所需增加的压力pZ和活化体积Va分别为1 111 MPa和-5.02 cm3/mol。

     

  • Boateng J, Verghese M, Shackelford L, et al. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in fisher 344 male rats [J]. Food Chem Toxicol, 2007, 45(5): 725-732.
    Serraino I, Dugo L, Dugo P, et al. Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure [J]. Life Sci, 2003, 73(9): 1097-1114.
    Sistia M, Fraternale M D. Antifungal activity of rubus ulmifolius schott standardized in vitro culture [J]. Food Sci Tech, 2007, 5: 1-4.
    Koide T, Hashimoto Y, Kamei H, et al. Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo [J]. Cancer Biother Radio, 1997, 12(4): 277-280.
    Tsuda T, Watanabe M, Ohshima K, et al. Antioxidative activity of the anthocyanin pigments cyaniding 3-O--D-glucoside and cyanidin [J]. J Agric Food Chem, 1994, 42: 2407-2410.
    Francis F J. Food colorants: Anthocyanins [J]. Crit Rev Food Sci, 1989, 28: 273-314.
    Jackman R L, Yada R Y, Tung M A, et al. Anthocyanins as food colorants-A review [J]. J Food Biochem, 1987, 11: 201-247.
    Huang H T. Decolorization of anthocyanins by fungal enzymes [J]. J Agric Food Chem, 1955, 3(2): 141-146.
    Wightman J D, Wrolstad R E. Anthocyanin analysis as a measure of glycosidease activity in enzymes for juice processing [J]. J Food Sci, 2006, 60(4): 862-867.
    Zhang Z Q, Pang X Q, Ji Z L, et al. Role of anthocyanin degradation in litchi pericarp browning [J]. Food Chem, 2001, 75: 217-221.
    Sakamura S, Obata Y. Anthocyanase and anthocyanins occurring in eggplant, solanum melongena [J]. Agricultural and Biological Chemistry, 1965, 25: 750-756.
    Barbagallo R N, Palmeri R, Fabiano S, et al. Characteristic of -glucosidase from sicilian blood oranges in relation to anthocyanin degradation [J]. Enzyme Microb Tech, 2007, 41: 570-575.
    Wang W D, Xu S Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate [J]. J Food Eng, 2007, 82(3): 271-275.
    Morild E. The theory of pressure effect on enzymes [J]. Adv Protein Chem, 1981, 34: 93-166.
    Garciapalazon A, Suthanthangjai W, Kajda P, et al. The effects of high hydrostatic pressure on -glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragariaananassa) [J]. Food Chem, 2004, 88(1): 7-10.
    Suthanthangjai W, Kajda P, Zabetakis I. The effect of high hydrostatic pressure on the anthocyanin of raspberry (Rubus idaeus) [J]. Food Chem, 2005, 90(1-2): 193-197.
    Zabetakis I, Leclerc D, Kajda P. The effect of high hydrostatic pressure on the strawberry anthocyanins [J]. Food Chem, 2000, 48: 2749-2754.
    Ferrari G, Maresca P, Ciccarone R. The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice [J]. J Food Eng, 2010, 100(2): 245-253.
    Orruno E, Apenten R O, Zabkis I. The role of -glucosidase in the biosynthesis of 2, 5-dimethyl-4-hydroxy-3(2h)-furanone in Strawberry (Fragaria ananassa cv. Elsanta) [J]. Flavour Frag J, 2001, 16: 81-84.
    Castro S M, Loey V A, Saraiva J A, et al. Inactivation of pepper (Capsicum annuum) pectin methy-lesterase by combined high-pressure and temperature treatments [J]. J Food Eng, 2006, 75: 50-58.
    Ling A C, Lund D B. Determining kinetic parameters for thermal inactivation of heat resistant and heat labile isoenzymes from thermal destruction curves [J]. J Food Sci, 1978, 43: 1307-1310.
    Indrawati A V, Ludikhuyze L R, Hendrickx M E. Single, combined, or sequential action of pressure and temperature on lipoxygenase in green beans (Phaseolus vulgaris L. ): A kinetic inactivation study [J]. Biotechnol Prog, 1999, 15(2): 273-277.
    Broeck V D, Ludikhuyze L R, Loey V A, et al. Inactivation of orange pectinesterase by combined high-pressure and temperature treatments: A kinetic study [J]. J Agr Food Chem, 2000, 48: 1960-1970.
    Weemaes C A, Ludikhuyze L R, Broeck I V, et al. Kinetics of combined pressure-temperature inactivation avocado polyphenoloxidase [J]. Biotechnol Bioeng, 1998, 60(3): 292-300.
    Basak S, Ramaswamy H S. Ultra high pressure treatment of orange juice: A kinetic study on inactivation of pectin methyl esterase [J]. Food Res Int, 1996, 29(7): 601-607.
    Wang Z, Xu S Y, Tang J. Food Chemistry [M]. Beijing: China Light Industry Press, 1999: 145-146. (in Chinese)
    王璋, 许时婴, 汤坚. 食品化学 [M]. 北京: 中国轻工业出版社, 1999: 145-146.
    Vila-Real H, Alfaia A, Calado A, et al. Beta-glucosidase inactivation from naringinase, using a combined thermal and pH approach [J]. New Biotechnology, 2009, 25(Suppl 1): S148.
    Chang M Y, Kao H C, Shin J R. Thermal inactivation and reactivity of -glucosidase immobilized on chitosan-clay composite [J]. Int J Biol Macromol, 2008, 43: 48-53.
  • 加载中
计量
  • 文章访问数:  7157
  • HTML全文浏览量:  362
  • PDF下载量:  485
出版历程
  • 收稿日期:  2011-01-14
  • 修回日期:  2011-02-25
  • 发布日期:  2012-06-15

目录

    /

    返回文章
    返回