高浓度氩气稀释对C2H2-2.5O2气体直接起爆临界能量影响的实验研究

张博 Lee John H S 白春华

张博, Lee John H S, 白春华. 高浓度氩气稀释对C2H2-2.5O2气体直接起爆临界能量影响的实验研究[J]. 高压物理学报, 2012, 26(1): 55-62. doi: 10.11858/gywlxb.2012.01.008
引用本文: 张博, Lee John H S, 白春华. 高浓度氩气稀释对C2H2-2.5O2气体直接起爆临界能量影响的实验研究[J]. 高压物理学报, 2012, 26(1): 55-62. doi: 10.11858/gywlxb.2012.01.008
ZHANG Bo, Lee John H S, BAI Chun-Hua. Experimental Investigation of the Influence of Highly Argon Dilution on the Critical Initiation Energy for Direct Initiation of C2H2-2.5O2 Mixtures[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 55-62. doi: 10.11858/gywlxb.2012.01.008
Citation: ZHANG Bo, Lee John H S, BAI Chun-Hua. Experimental Investigation of the Influence of Highly Argon Dilution on the Critical Initiation Energy for Direct Initiation of C2H2-2.5O2 Mixtures[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 55-62. doi: 10.11858/gywlxb.2012.01.008

高浓度氩气稀释对C2H2-2.5O2气体直接起爆临界能量影响的实验研究

doi: 10.11858/gywlxb.2012.01.008
详细信息
    通讯作者:

    张博 E-mail:zhangb@live.cn

Experimental Investigation of the Influence of Highly Argon Dilution on the Critical Initiation Energy for Direct Initiation of C2H2-2.5O2 Mixtures

  • 摘要: 采用高压电点火进行直接起爆,通过放电过程中电流的输出信号确定起爆能量,实验测定了C2H2-2.5O2气体和加入摩尔浓度为70%氩气的C2H2-2.5O2混合气体直接起爆的临界起爆能量,研究了高浓度氩气稀释对C2H2-2.5O2混合物临界起爆能量的影响。实验测得的混合物临界起爆能量实验值与Lee等人的表面积能量理论值基本吻合。研究表明:C2H2-2.5O2气体和加入摩尔浓度为70%氩气的C2H2-2.5O2混合气体的临界起爆能量均依赖于初始压力,并呈反相关指数关系;在相同实验条件下,高浓度氩气稀释极大提高了混合气体直接起爆的临界起爆能量。分析认为,由于临界起爆能量正比于诱导区长度的3次方,因此在相同初始压力下,高浓度氩气的稀释增加了C2H2-2.5O2混合气体爆轰诱导区长度,并最终导致其临界起爆能量的显著上升。

     

  • Lee J H S. Initiation of gaseous detonation [J]. Annu Rev Phys Chem, 1977, 28: 75-104.
    Lee J H S. Dynamic parameters of gaseous detonations [J]. Annu Rev Fluid Mech, 1984, 16: 311-336.
    Zel'dovich Y B, Kogarko S M, Simonov N N. An experimental investigation of spherical detonation in gases [J]. Sov Phys Tech Phys, 1957, 1: 1689-1713.
    Matsui H, Lee J H S. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixture [J]. Proc Combust Inst, 1978, 17: 1269.
    Lee J H, Matsui H. A comparison of the critical energies for direct initiation of spherical detonations in acetylene-oxygen mixtures [J]. Combust flame, 1977, 28: 61-66.
    Lee J H S, Higgins A J. Comments on criteria for direct initiation of detonation [J]. Phil Trans R Soc Lond A, 1999, 357: 3503-3521.
    Benedick W B, Guirao C M, Knystautas R, et al. Critical charge for the direct initiation of detonation in gaseous fuel-air mixtures [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 1986, 106: 181-202.
    Lee J H S, Guirao C M. Fuel-air explosions [M]. Waterloo, Ontario, Canada: University of Waterloo Press, 1982: 157.
    Knystautas R, Lee J H S. On the effective energy for direct initiation of gaseous detonations [J]. Combust Flame, 1976, 27: 221-228.
    Kamenskihs V, Ng H D, Lee J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures [J]. Combust Flame, 2010, 157(9): 1795-1799.
    Zhang B, Kamenskihs V, Ng H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proc Combust Inst, 2011, 33(2): 2265-2271.
    Desbordes D, Guerraud C, Hamada L, et al. Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 1993, 153: 347-359.
    Knystautas R, Lee J H, Guirao C M. The critical tube diameter for detonation failure in hydrocarbon-air mixtures [J]. Combust flame, 1982, 48: 63-83.
    Radulescu M I. The propagation and failure mechanism of gaseous detonations: Experiments in porous-walled tubes [D]. Montreal, Canada: McGill University, 2003.
    Kaneshige M, Shepherd J E. Detonation database, FM97-8 [R]. Pasadena, USA: California Institute of Technology, 1997.
    Kee R J, Rupley F M, Miller J A. Chemkin-Ⅱ: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, SAND89-8009 [R]. Washington DC, USA: Sandia National Laboratories, 1989.
    Konnov A A. Detailed reaction mechanism for small hydrocarbons combustion: Project-in-progress on the world wide web [EB/OL]. http: //homepages. vub. ac. be/~akonnov/science/mechanism/15Bel_abs. html.
    Shepherd J E. Detonation in gases [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 2009, 32: 83-98.
    Carnasciali F, Lee J H S, Knystautas R, et al. Turbulent jet initiation of detonation [J]. Combust Flame, 1991, 84(1-2): 170-180.
  • 加载中
计量
  • 文章访问数:  7164
  • HTML全文浏览量:  393
  • PDF下载量:  523
出版历程
  • 收稿日期:  2010-07-13
  • 修回日期:  2010-08-16
  • 发布日期:  2012-02-15

目录

    /

    返回文章
    返回