氢氧爆轰波在激波管中的成长机制研究

王建 段吉员 赵继波 文尚刚 谭多望

王建, 段吉员, 赵继波, 文尚刚, 谭多望. 氢氧爆轰波在激波管中的成长机制研究[J]. 高压物理学报, 2011, 25(6): 514-518. doi: 10.11858/gywlxb.2011.06.006
引用本文: 王建, 段吉员, 赵继波, 文尚刚, 谭多望. 氢氧爆轰波在激波管中的成长机制研究[J]. 高压物理学报, 2011, 25(6): 514-518. doi: 10.11858/gywlxb.2011.06.006
WANG Jian, DUAN Ji-Yuan, ZHAO Ji-Bo, WEN Shang-Gang, TAN Duo-Wang. Study on the Development Mechanism of Detonation Wave for the Hydrogen-Oxygen Mixture in a Shock Tube[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 514-518. doi: 10.11858/gywlxb.2011.06.006
Citation: WANG Jian, DUAN Ji-Yuan, ZHAO Ji-Bo, WEN Shang-Gang, TAN Duo-Wang. Study on the Development Mechanism of Detonation Wave for the Hydrogen-Oxygen Mixture in a Shock Tube[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 514-518. doi: 10.11858/gywlxb.2011.06.006

氢氧爆轰波在激波管中的成长机制研究

doi: 10.11858/gywlxb.2011.06.006
详细信息
    通讯作者:

    王建 E-mail:wj345jay@sina.com

Study on the Development Mechanism of Detonation Wave for the Hydrogen-Oxygen Mixture in a Shock Tube

  • 摘要: 针对气相爆轰波成长机制研究,采用压力传感器和高速摄影技术,测试了氢氧混合气体在点火后的火焰波、前驱冲击波以及爆轰波的成长变化过程,计算了冲击波过程参数和气体状态参数,分析了火焰加速机制。实验结果表明,APX-RS型高速摄影系统可用于拍摄气相爆轰波的成长历程;氢氧爆轰波的产生是由于湍流火焰和冲击波的相互正反馈作用,导致反应区内多处发生局部爆炸,爆炸波与冲击波相互耦合,最终成长为定常爆轰波。

     

  • Lee J H S, Knystautas R, Freiman A. High Speed Turbulent Deflagrations and Transition to Detonation in H2-Air Mixtures [J]. Combust Flame, 1984, 56(2): 227-239.
    Brown C J, Thomas G O. Experimental Studies of Shock-Induced Ignition and Transition to Detonation in Ethylene and Propane Mixtures [J]. Combust Flame, 1999, 117(4): 861-870.
    Thomas G O, Bambrey R J, Brown C. Experimental Observations of Flame Acceleration and Transition to Detonation Following Shock-Flame Interaction Combust [J]. Combustion Theory and Modelling, 2001, 5(4): 573-594.
    Thomas G O, Bambrey R J. Some Observations of the Controlled Generation and Onset of Detonation [J]. Shock Waves, 2002, 12(1): 13-21.
    Card J, Rival D, Ciccarelli G. DDT in Fuel-Air Mixtures at Elevated Temperatures and Pressures [J]. Shock Waves, 2005, 14(3): 167-173.
    Li J, Lai W H, Chung K, et al. Uncertainty Analysis of Deflagration-to-Detonation Run-up Distance [J]. Shock Waves, 2005, 14(5-6): 413-420.
    Kersten C, Frster H. Investigation of Deflagrations and Detonations in Pipes and Flame Arresters by High-Speed Framing [J]. Journal of Loss Prevention in the Process Industries, 2004, 17(1): 43-50.
    Medvedev S P, Khomik S V, Olivier H, et al. Hydrogen Detonation and Fast Deflagration Triggered by a Turbulent Jet of Combustion Products [J]. Shock Waves, 2005, 14(3): 193-203.
    Sorin R, Zitoun R, Desbordes D. Optimization of the Deflagration to Detonation Transition: Reduction of Length and Time of Transition [J]. Shock Waves, 2006, 15(2): 137-145.
    Nian W M, Zhou K Y, Wang H L, et al. The Re-intension Process of Gaseous Detonation Downstream of the Acoustic Absorbing Walled Section [J]. Journal of Experimental Mechanics, 2005, 20(1): 37-43. (in Chinese)
    年伟民, 周凯元, 王汉良, 等. 气体爆轰波在声学吸收壁下游的再加强过程 [J]. 实验力学, 2005, 20(1): 37-43.
    Zhu Y J, Yang J M, Lee J H S. High-Speed Deflagration and It's Transition to Detonation in Two Different Gaseous Mixtures [J]. Journal of Experimental Mechanics, 2008, 23(2): 110-117. (in Chinese)
    朱雨建, 杨基明, Lee J H S. 两种不同气体中的高速爆燃波及其向爆轰的转变 [J]. 实验力学, 2008, 23(2): 110-117.
    Sun C W, Wei Y Z, Zhou Z K. Applied Detonation Physics [M]. Beijing: National Defense Industry Press, 2000.
    孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.
  • 加载中
计量
  • 文章访问数:  7673
  • HTML全文浏览量:  358
  • PDF下载量:  518
出版历程
  • 收稿日期:  2010-09-17
  • 修回日期:  2011-03-17
  • 发布日期:  2011-12-15

目录

    /

    返回文章
    返回