爆炸载荷下纳米晶铜晶粒度分布及影响因素研究

王金相 周楠 王小绪 杭逸夫

王金相, 周楠, 王小绪, 杭逸夫. 爆炸载荷下纳米晶铜晶粒度分布及影响因素研究[J]. 高压物理学报, 2011, 25(6): 501-507. doi: 10.11858/gywlxb.2011.06.004
引用本文: 王金相, 周楠, 王小绪, 杭逸夫. 爆炸载荷下纳米晶铜晶粒度分布及影响因素研究[J]. 高压物理学报, 2011, 25(6): 501-507. doi: 10.11858/gywlxb.2011.06.004
WANG Jin-Xiang, ZHOU Nan, WANG Xiao-Xu, HANG Yi-Fu. Study on the Grain-Size Distribution Rule and Influence Factors of Nanocrystalline Copper Fabricated under Explosive Loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 501-507. doi: 10.11858/gywlxb.2011.06.004
Citation: WANG Jin-Xiang, ZHOU Nan, WANG Xiao-Xu, HANG Yi-Fu. Study on the Grain-Size Distribution Rule and Influence Factors of Nanocrystalline Copper Fabricated under Explosive Loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 501-507. doi: 10.11858/gywlxb.2011.06.004

爆炸载荷下纳米晶铜晶粒度分布及影响因素研究

doi: 10.11858/gywlxb.2011.06.004
详细信息
    通讯作者:

    王金相 E-mail:wjxdlut@sina.com

Study on the Grain-Size Distribution Rule and Influence Factors of Nanocrystalline Copper Fabricated under Explosive Loading

  • 摘要: 采用爆炸动态加载使粗晶铜发生高应变率塑性大变形的方法制备了纳米晶铜。利用X射线衍射法对其晶粒度进行了检测,借助于LS-DYNA3D非线性有限元程序对试样变形过程进行了数值模拟,在此基础上对应变和应变率进行了统计,分析了宏、细观应变对晶粒细化程度的影响。结果表明:采用爆炸加载法可制备出纳米晶铜,平均晶粒度范围可有效控制在100 nm以内;爆炸加载过程中应变率高达104 s-1,应变的提高有利于晶粒细化;在爆炸加载方向晶粒度成不均匀分布。

     

  • Morris D G. Mechanical Behavior of Nanostructured Materials [M]. Geneva: Trans Tech Pub Inc, 1998.
    Wang H T, Yang W. Mechanical Behavior of Nanocrystalline Metals [J]. Adv Mech, 2004, 34(3): 314-326. (in Chinese)
    王宏涛, 杨卫. 纳米金属的力学行为 [J]. 力学进展, 2004, 34(3): 314-326.
    Sanders P G, Eastman J A, Weertman J R, et al. Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium [J]. Acta Mater, 1997, 45(10): 4019-4025.
    Lu L, Li S X, Lu K, et al. An Abnormal Strain Rate Effect on Tensile Behavior in Nanocrystalline Copper [J]. Scripta Mater, 2001, 45(10): 1163-1169.
    Zhang L D, Mou J M. Nano-Materials and Nano-Structure [M]. Beijing: Science Press, 2001. (in Chinese)
    张立德, 牟季美. 纳米材料和纳米结构 [M]. 北京: 科学出版社, 2001.
    Benkassem S, Capolungo L, Cherkaoui M. Mechanical Proerties and Multi-Scale Modeling of Nanocrystalline Materials [J]. Acta Mater, 2007, 55(10): 3563-3572.
    Lichtenberger A, Bohmann A. Influence of Structure and Metallurgical State of a Liner on the Performance of a Shaped Charge [A]//Proceeding of the 6th International Symposium on Ballistics [C]. Orlando, 1981.
    Li A M, Zhang X Y, Zhao X C, et al. Progress in Preparation Technology and Mechanical Properties of Nanocrystalline Bulk Metals [J]. Materials Review, 2007, 21(4): 111-116. (in Chinese)
    李安敏, 张喜燕, 赵新春. 纳米晶金属块体材料制备技术与力学性能研究进展 [J]. 材料导报, 2007, 21(4): 111-116.
    Gleiter H. Nanostructured Materials: State of the Art and Perspectives [J]. Nanostructured Materials, 1995, 16: 3-14.
    Valiev R Z, Alexandrov I V. Bulk Nanostructured Materials by Severe Plastic Deformation [M]. Lin B N, Translated by Lin B N. Beijing: Science Press, 2006. (in Chinese)
    Valiev R Z, Alexandrov I V. 剧烈塑性形变纳米材料 [M]. 林柏年, 译. 北京: 科学出版社, 2006.
    Champion Y, Langlois C, Gurin S, et al. Analysis of Ductility of Nanostructured Copper Prepared by Powder Metallurgy [J]. Eng Fract Mech, 2008, 75(12): 3624-3632.
    Jankowski A F, Saw C K, Harper J F, et al. Nanocrystalline Growth and Grain-Size Effects in Au-Cu Electrodeposits [J]. Thin Solid Films, 2006, 494(1-2): 268-273.
    Chen F, Yang L M, Zhang M H. Producing Nano-Structured Copper Specimens under the High Strain Rate Load and Severe Plastic Deformation [J]. Journal of Ningbo University (Natural Science Engineering Edition), 2006, 19(4): 481-485. (in Chinese)
    陈锋, 杨黎明, 张明华. 用高应变率大应变载荷制备纳米晶铜试件 [J]. 宁波大学学报(理工版), 2006, 9(4): 481-485.
    Deng X L, Zhu W J, He H L, et al. Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper [J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59-65. (in Chinese)
    邓小良, 祝文军, 贺红亮, 等. 沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究 [J]. 高压物理学报, 2007, 21(1): 59-65.
    Johnson G R, Cook W H. Fracture Characteristics of Three Metals Subjected to Various Strain Rates, Temperatures and Pressures [J]. Eng Frac Mech, 1985, 21(1): 31-48.
    Editorial Group of Explosion and Its Effect by the Eighth Department of Beijing Institute of Technology. Explosion and Its Effect [M]. Beijing: National Defense Industry Press, 1979: 274-280. (in Chinese)
    北京工业学院八系《爆炸及其作用》编写组. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1979: 274-280.
    Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures [A]//Proceedings of the Seventh International Symposium on Ballistic [C]. The Netherlands: The Hague, 1983: 541-547.
    Zhang B, Shim V P W. Determination of Inelastic Heat Fraction of OFHC Copper through Dynamic Compression [J]. Int J Impact Eng, 2010, 37(1): 50-68.
    Cooper S R, Benson D J, Nesterenko V F. A Numerical Exploration of the Role of Void Geometry on Void Collapse and Hot Spot Formation in Ductile Materials [J]. Int J Plasticity, 2000, 16: 525-540.
  • 加载中
计量
  • 文章访问数:  7761
  • HTML全文浏览量:  420
  • PDF下载量:  626
出版历程
  • 收稿日期:  2010-05-24
  • 修回日期:  2010-10-26
  • 发布日期:  2011-12-15

目录

    /

    返回文章
    返回