爆炸平面冲击波在金属颗粒介质中的衰减

陈亚红 白春华 王仲琦 李建平

陈亚红, 白春华, 王仲琦, 李建平. 爆炸平面冲击波在金属颗粒介质中的衰减[J]. 高压物理学报, 2011, 25(6): 481-486. doi: 10.11858/gywlxb.2011.06.001
引用本文: 陈亚红, 白春华, 王仲琦, 李建平. 爆炸平面冲击波在金属颗粒介质中的衰减[J]. 高压物理学报, 2011, 25(6): 481-486. doi: 10.11858/gywlxb.2011.06.001
CHEN Ya-Hong, BAI Chun-Hua, WANG Zhong-Qi, LI Jian-Ping. Planar Explosion Shock Wave Attenuation in Granular Metal[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 481-486. doi: 10.11858/gywlxb.2011.06.001
Citation: CHEN Ya-Hong, BAI Chun-Hua, WANG Zhong-Qi, LI Jian-Ping. Planar Explosion Shock Wave Attenuation in Granular Metal[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 481-486. doi: 10.11858/gywlxb.2011.06.001

爆炸平面冲击波在金属颗粒介质中的衰减

doi: 10.11858/gywlxb.2011.06.001
详细信息
    通讯作者:

    白春华 E-mail:chbai@bit.edu.cn

Planar Explosion Shock Wave Attenuation in Granular Metal

More Information
    Corresponding author: BAI Chun-Hua E-mail:chbai@bit.edu.cn
  • 摘要: 分析了颗粒介质在冲击载荷下的加载、卸载本构关系,应用特征线理论对平面一维爆炸冲击波在颗粒介质中的衰减进行了计算。结果表明:组成颗粒的材料、孔隙率及炸药的爆速决定了初始冲击波峰值的大小。炸药爆速越高,介质孔隙率越大,材料本身的冲击阻抗越大,初始压力越高。炸药长度、材料本身的冲击阻抗及介质的孔隙率决定了冲击波的衰减速度。炸药长度越小,材料本身的冲击阻抗越大,介质的孔隙率越高,冲击波衰减越快。

     

  • Meyers M A. Dynamic Behavior of Materials [M]. New York: John Wiley Sons, 1994: 140-143.
    Carroll M M, Holt A C. Static and Dynamic Pore-Collapse Relations for Ductile Materials [J]. J Appl Phys, 1972, 43: 1626-1636.
    Oh K H, Persson P A. Equation of State for Extrapolation of High-Pressure Shock Hugoniot Data [J]. J Appl Phys, 1989, 65(10): 3852-3856.
    Dijken D K, DeHosson J T M. Thermodynamic Model of the Compaction of Powder Materials by Shock Waves [J]. J Appl Phys, 1994, 75(1): 203-209.
    Wang L L. Foundation of Stress Wave [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 213-223. (in Chinese)
    王礼立. 应力波基础 [M]. 第2版. 北京: 国防工业出版社, 2005: 213-223.
    Meyers M A, Beson D J, Olevsky E A. Shock Consolidation: Microstructurally-Based Analysis and Computational Modeling [J]. Acta Mater, 1999, 47(7): 2089-2108.
    Mamalis A G, Vottea I N, Manolakos D E. On the Modeling of the Compaction Mechanism of Shock Compacted Powders [J]. J Mater Process Tech, 2001, 108: 165-178.
    WangY G, Hu S S, Wang L L. Shock Attenuation in Aluminum Foams under Explosion Loading [J]. Explosion and Shock Waves, 2003, 23(6): 516-522. (in Chinese)
    王永刚, 胡时胜, 王礼立. 爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值研究 [J]. 爆炸与冲击, 2003, 23(6): 516-522.
    Zohoor M, Mehdipoor A. Explosive Compaction of Tungsten Powder Using a Converging Underwater Shock Wave [J]. J Mater Process Tech, 2009, 209: 4201-4206.
    Wang H F, Feng S S. An Experimental Research on Shock Attenuations in Porous Materials [J]. Journal of Beijing Institute of Technology, 1997, 17(1): 41-44. (in Chinese)
    王海福, 冯顺山. 多孔材料中冲击波衰减特性的实验研究 [J]. 北京理工大学学报, 1997, 17(1): 41-44.
    Somfai E, Roux J N, Snoeijer J H, et al. Elastic Wave Propagation in Confined Granular Systems [J]. Phys Rev E, 2005, 72(2): 21301.
  • 加载中
计量
  • 文章访问数:  7712
  • HTML全文浏览量:  503
  • PDF下载量:  565
出版历程
  • 收稿日期:  2010-10-04
  • 修回日期:  2010-12-16
  • 发布日期:  2011-12-15

目录

    /

    返回文章
    返回