靶结构对烧蚀模式激光推进效应影响的数值模拟

童慧峰 唐志平

童慧峰, 唐志平. 靶结构对烧蚀模式激光推进效应影响的数值模拟[J]. 高压物理学报, 2011, 25(3): 227-234 . doi: 10.11858/gywlxb.2011.03.006
引用本文: 童慧峰, 唐志平. 靶结构对烧蚀模式激光推进效应影响的数值模拟[J]. 高压物理学报, 2011, 25(3): 227-234 . doi: 10.11858/gywlxb.2011.03.006
TONG Hui-Feng, TANG Zhi-Ping. Simulation of Ablation Mode Laser Propulsion Efficiency of Confined Target Geometry[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 227-234 . doi: 10.11858/gywlxb.2011.03.006
Citation: TONG Hui-Feng, TANG Zhi-Ping. Simulation of Ablation Mode Laser Propulsion Efficiency of Confined Target Geometry[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 227-234 . doi: 10.11858/gywlxb.2011.03.006

靶结构对烧蚀模式激光推进效应影响的数值模拟

doi: 10.11858/gywlxb.2011.03.006
详细信息
    通讯作者:

    童慧峰

Simulation of Ablation Mode Laser Propulsion Efficiency of Confined Target Geometry

More Information
    Corresponding author: TONG Hui-Feng
  • 摘要: 强激光辐照于固体平面靶产生高温、高压等离子体喷射,进而对固体靶产生力学推进效应,这是烧蚀模式激光推进的基本原理。采用针对高温气体(等离子体)电离度的一种近似计算方法,以及具有五阶精度的广义Godunov差分格式-加权本质无振荡格式WENO(Weighted Essentially Non-Oscillatory Schemes),对强激光烧蚀固体靶产生等离子体喷射推进效应进行数值模拟。计算了固体靶面横向尺寸与激光光斑大小对推进效应影响的耦合关系,以及不同靶面结构烧蚀压力随时间的变化及其推进效应参数变化。数值模拟结果表明,靶面横向尺寸与光斑大小具有最优耦合值;固体靶面增加约束喷管结构对激光推进效应明显增大,并且随着约束喷管位置的不同,对激光推进效应增大的影响也有较大差异。

     

  • Kudrjashov S I, Allen S D. Optical Transmission Measurements of Explosive Boiling and Liftoff of a Layer of Micro-Scale Water Droplets from a KrF Laser-Heated Si Substrate [J]. J Appl Phys, 2003, 93: 4306.
    Shee M, Kim D, Grigoropoulus C P. Liquid-Assisted Pulsed Laser Cleaning Using Near-Infrared and Ultraviolet Radiation [J]. J Appl Phys, 1999, 86: 6519.
    Zinovik I, Povitsky A. Dynamics of Multiple Plumes in Laser Ablation: Modeling of the Shielding Effect [J]. J Appl Phys, 2006, 100: 024911.
    Wen S B, Mao X L , Greif R, et al. Expansion of the Laser Ablation Vapor Plume into a Background Gas [J]. J Appl Phys, 2007, 101: 023114.
    Resseguier T, Signor L, Boustie M, et al. Experimental Investigation of Liquid Spall in Laser Shock-Loaded Tin [J]. J Appl Phys, 2007, 101: 013506.
    Kantrowitz A. Propulsion to Orbit by Ground-Based Laser [J]. Astronautics and Aeronautics, 1972, 10(5): 74.
    Phipps C R. Optimum Parameters for Laser Launching Objects into Low Earth Orbit [J]. Laser and Particle Beams, 2000, 18: 661.
    Phipps C R. LISP: Laser Impulse Space Propulsion [J]. Laser and Particle Beams, 1994, 12(1): 23.
    Shu C W. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws [R]. NASA/CR-97-206253, 1997.
    Tong H F, Tang Z P, Hu X J, et al. Experiment Study of Ablation Mode Laser Propulsion [J]. High Power Laser and Particle Beams, 2004, 16(11): 1380-1384. (in Chinese)
    童慧峰, 唐志平, 胡晓军, 等. 烧蚀模式激光推进的实验研究 [J]. 强激光与粒子束, 2004, 16(11): 1380-1384.
    Tong H F, Tang Z P, Zhang L. 2-D Dynamical Simulation of Laser Supported Plasma Field [J]. High Power Laser and Particle Beams, 2006, 18(12): 1996-2000. (in Chinese)
    童慧峰, 唐志平, 张凌. 激光支持等离子体流场的二维动态数值模拟 [J]. 强激光与粒子束, 2006, 18(12): 1996-2000.
    Tong H F, Tang Z P, Zhang L. Simulation of Ablation Mode Laser Propulsion [J]. Explosion and Shock Waves, 2007, 27(2): 165-170. (in Chinese)
    童慧峰, 唐志平, 张凌. 烧蚀模式激光推进的数值模拟 [J]. 爆炸与冲击, 2007, 27(2): 165-170.
    Tong H F, Tang Z P. Simulation of Energy Coupling of Laser and Ablated Plasma at Target Surface [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 142-148. (in Chinese)
    童慧峰, 唐志平. 激光与固体靶面烧蚀等离子体的能量耦合计算 [J]. 高压物理学报, 2008, 22(2): 142-148.
    Itina T E, Marine W, Autric M. Mathematical Modeling of Pulsed Laser Ablated Flows [J]. Appl Surface Sci, 2000, 154-155: 60-65.
    Zel'dovich Y B, Raizer Y P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [M]. New York: Academic Press, 1966.
  • 加载中
计量
  • 文章访问数:  7285
  • HTML全文浏览量:  333
  • PDF下载量:  579
出版历程
  • 收稿日期:  2010-03-16
  • 修回日期:  2010-09-03
  • 发布日期:  2011-06-15

目录

    /

    返回文章
    返回