纳米BaTiO3陶瓷的超高压烧结

肖长江 靳常青 栗正新 邓相荣

肖长江, 靳常青, 栗正新, 邓相荣. 纳米BaTiO3陶瓷的超高压烧结[J]. 高压物理学报, 2011, 25(1): 55-60 . doi: 10.11858/gywlxb.2011.01.009
引用本文: 肖长江, 靳常青, 栗正新, 邓相荣. 纳米BaTiO3陶瓷的超高压烧结[J]. 高压物理学报, 2011, 25(1): 55-60 . doi: 10.11858/gywlxb.2011.01.009
XIAO Chang-Jiang, JIN Chang-Qing, LI Zheng-Xin, DENG Xiang-Rong. Fabrication of Nanocrystalline BaTiO3 Ceramics by Ultra-High Pressure Sintering[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 55-60 . doi: 10.11858/gywlxb.2011.01.009
Citation: XIAO Chang-Jiang, JIN Chang-Qing, LI Zheng-Xin, DENG Xiang-Rong. Fabrication of Nanocrystalline BaTiO3 Ceramics by Ultra-High Pressure Sintering[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 55-60 . doi: 10.11858/gywlxb.2011.01.009

纳米BaTiO3陶瓷的超高压烧结

doi: 10.11858/gywlxb.2011.01.009
详细信息
    通讯作者:

    肖长江

Fabrication of Nanocrystalline BaTiO3 Ceramics by Ultra-High Pressure Sintering

More Information
    Corresponding author: XIAO Chang-Jiang
  • 摘要: 将10 nm钛酸钡粉在6 GPa超高压条件下进行烧结,得到了晶粒大小约为30 nm的钛酸钡陶瓷。用扫描电子显微镜和原子力显微镜观测了样品的微观结构。研究表明,由于超高压能够压碎纳米粉体中的团聚体,而且能增加烧结的驱动力,降低成核的势垒,从而使成核速率增加;同时由于扩散能力的降低而使生长速率减小,所以超高压烧结能在较低的温度和较短的时间内得到致密的纳米陶瓷。用压电力显微镜对样品的压电性能进行了检测。在30 nm钛酸钡陶瓷的不同区域内,都存在完整的压电响应回线,说明在30 nm钛酸钡陶瓷中存在压电性。此外,由于超高压的还原性气氛,使钛酸钡陶瓷在烧结过程中产生了氧空位,氧空位俘获电子而形成F+色心,使钛酸钡陶瓷颜色变黑。

     

  • Skandan G. Processing of Nanostructured Zirconia Ceramics [J]. Nanostruct Mater, 1995, 5(2): 111-126.
    Chaim R, Margulis M. Densification Maps for Spark Plasma Sintering of Nanocrystalline MgO Ceramics [J]. Mater Sci Eng A, 2005, 407: 180-187.
    Zhao Z, Buscagila V, Viviani M, et al. Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics [J]. Phys Rev B, 2004, 70: 024107(1)-024107(10).
    Chen I W, Wang X H. Sintering Dense Nanocrystalline Oxide without Final Stage Grain Growth [J]. Nature, 2000, 404: 168-171.
    Wang X H, Deng X Y, Bai H L, et al. Two-Step Sintering of Ceramics with Constant Grain-Size, Ⅱ: BaTiO3 and Ni-Cu-Zn Ferrite [J]. J Am Ceram Soc, 2006, 89(2): 438-443.
    Liao S C, Chen Y J, Kear B H, et al. High Pressure/Low Temperature Sintering of Nanocrystalline Alumina [J]. Nanostruct Mater, 1998, 10(6): 1063-1079.
    Yuan W Z, Tian W, Guo J. Rapid Sintering of Nanocrystalline ZrO2(4Y) Powder under High Pressure [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 259-264. (in Chinese)
    袁望治, 田卫, 郭捷, 等. 纳米ZrO2(4Y) 的快速高压烧结研究 [J]. 高压物理学报, 2001, 15(4): 259-264.
    Li B R, Wang X H, Li L T. Synthesis and Sintering Behavior of BaTiO3 Prepared by Different Chemical Methods [J]. Mater Chem Phys, 2002, 78: 292-296.
    Xiao C J, Jin C Q, Wang X H. Crystal Structure of Dense Nanocrystalline BaTiO3 Ceramics [J]. Mater Chem Phys, 2008, 111: 209-212.
    Buscaglia M T, Viviani M, Buscaglia V, et al. High Dielectric Constant and Frozen Macroscopic Polarization in Dense Nanocrystalline BaTiO3 Ceramics [J]. Phys Rev B, 2006, 73: 064114(1)-064114(10).
    Wang X H, Deng X Y, Wen H, et al. Bulk Dense Nanocrystalline BaTiO3 Ceramics Prepared by Novel Pressureless Two-Step Sintering Method [J]. Appl Phys Lett, 2006, 89: 162902(1)-162902(3).
    Xiao C J, Chi Z H, Zhang W W, et al. The Phase Transitions and Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics Fabricated by Pressure Assisted Sintering [J]. J Phys Chem Sol, 2007, 68: 311-314.
    Kim I D, Avrahami Y, Harry L T. Study of Orientation Effect on Nanoscale Polarization in BaTiO3 Thin Films Using Piezoresponse Force Microscopy [J]. Appl Phys Lett, 2005, 86: 192907(1)-192907(3).
    Xiao C J, Jin C Q, Wang X H. The Fabrication of Nanocrystalline BaTiO3 Ceramics under High Temperature and High Pressure [J]. Mater Process Technol, 2009, 209(4): 2033-2037.
  • 加载中
计量
  • 文章访问数:  7697
  • HTML全文浏览量:  435
  • PDF下载量:  610
出版历程
  • 收稿日期:  2010-05-24
  • 修回日期:  2010-09-05
  • 发布日期:  2011-02-15

目录

    /

    返回文章
    返回