以修正WLF方程研究压力作用下丁腈橡胶的阻尼性能

刘海露 赵秀英 宋镇宇 吴丝竹 张立群

刘海露, 赵秀英, 宋镇宇, 吴丝竹, 张立群. 以修正WLF方程研究压力作用下丁腈橡胶的阻尼性能[J]. 高压物理学报, 2010, 24(3): 192-200 . doi: 10.11858/gywlxb.2010.03.006
引用本文: 刘海露, 赵秀英, 宋镇宇, 吴丝竹, 张立群. 以修正WLF方程研究压力作用下丁腈橡胶的阻尼性能[J]. 高压物理学报, 2010, 24(3): 192-200 . doi: 10.11858/gywlxb.2010.03.006
LIU Hai-Lu, ZHAO Xiu-Ying, SONG Zhen-Yu, WU Si-Zhu, ZHANG Li-Qun. Study on the Damping Properties of Nitrile Rubber under Pressure by Modified WLF Equation[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 192-200 . doi: 10.11858/gywlxb.2010.03.006
Citation: LIU Hai-Lu, ZHAO Xiu-Ying, SONG Zhen-Yu, WU Si-Zhu, ZHANG Li-Qun. Study on the Damping Properties of Nitrile Rubber under Pressure by Modified WLF Equation[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 192-200 . doi: 10.11858/gywlxb.2010.03.006

以修正WLF方程研究压力作用下丁腈橡胶的阻尼性能

doi: 10.11858/gywlxb.2010.03.006
详细信息
    通讯作者:

    吴丝竹

Study on the Damping Properties of Nitrile Rubber under Pressure by Modified WLF Equation

More Information
    Corresponding author: WU Si-Zhu
  • 摘要: 时温等效原理表明固定频率下温度越高,模量越低,而相同温度下频率越低,模量越低,即升高温度与降低频率具有同等效应。根据这一规律,可将聚合物的力学性能随温度的变化转化为这些性能随频率的变化,从而可通过不同温度下的力学性能测试数据,换算成宽频率范围内的材料力学性能表现。为了研究压力作用下橡胶阻尼性能的基本变化规律,通过自由体积理论推导出加压后的修正WLF方程,采用动态热机械分析实验,测试得到丁腈橡胶在不同温度下的损耗因子tan 对频率的曲线,根据计算得到不同压力下的测试温度至室温的平移因子,便可做出加压后的丁腈橡胶的损耗因子-频率谱的主拟合曲线,其曲线的频率跨度达10个数量级以上。结果表明,丁腈橡胶的tan 测试段在高于参考温度以后出现,而随着压力的增加,玻璃化温度相应升高,峰值往高频移动达1.5个数量级。此结果为研究压力作用下橡胶材料阻尼性能的定量变化提供了理论依据。

     

  • Huang Q B. Noise Control Engineering [M]. Wuhan: Huazhong University of Science and Technology Press, 1999: 23-52. (in Chinese)
    黄其柏. 噪声控制工程学 [M]. 武汉: 华中理工大学出版社, 1999: 23-52.
    Zhao X Y, Xing P, Tian M, et al. Nitrile Butadiene Rubber/Hindered Phenol Nanocomposites with Improved Strength and High Damping Performance [J]. Polymer, 2007, 48(20): 6056-6063.
    Sirisinha C, Prayoonchatphan N. Study of Carbon Black Distribution in BR/ NBR Blends Based on Damping Properties: Influences of Carbon Black Particle Size, Filler, and Rubber Polarity [J]. J Appl Polym Sci, 2001, 81(13): 3198-3203.
    Guo M L. Thermal Analysis for Dynamic Behavior of High Polymer and Composite Materials [M]. Beijing: Chemical Industry Press, 2002: 29-52. (in Chinese)
    过梅丽. 高聚物与复合材料的动态力学热分析 [M]. 北京: 化学工业出版社, 2002: 29-52.
    Chen B Y, Ma G F, Ruan J S. Research Progress of High-Dampling Rubber Suitable for a Wide Temperature Range [J]. World Rubber Industry, 2004, 31(11): 33-37. (in Chinese)
    陈兵勇, 马国富, 阮家声. 宽温域高阻尼橡胶材料研究进展 [J]. 世界橡胶工业, 2004, 31(11): 33-37.
    Echeverria I, Su P C, Simon S L, et al. Physical Aging of Polyether Imide: Creep and DSC Measurement [J]. J Polym Sci, Part B: Polym Phys, 1995, 33(17): 2457-2468.
    Fan R L, Zhang Y, Huang C, et al. Effect of Crosslink Structures on Dynamic Mechanical Properties of Natural Rubber Vulcanizates under Different Aging Conditions [J]. J Appl Polym Sci, 2001, 81(3): 710-718.
    Struik L C E. On the Rejuvenation of Physically Aged Polymers by Mechanical Deformation [J]. Polymer, 1997, 38(16): 4053-4057.
    Tomlins P E. Comparison of Different Function for Modelling the Creep and Physical Aging Effects in Plastics [J]. Polymer, 1996, 37(17): 3907-3913.
    Bradshaw R D, Brinson L C. A Continuous Test Data Method to Determine a Reference Curve and Shift Rate for Isothermal Physical Aging [J]. Polym Eng Sci, 1999, 39(2): 211-235.
    Wei Y T, Yang T Q, Du X W. A Damage Mechanics Model of Viscoelastic Bodies about Dynamic Mechanical Characteristics [A]//Development of Rheology [C]. Wuhan: Huazhong University of Science and Technology Press, 1999: 255-260. (in Chinese)
    危银涛, 杨挺青, 杜星文. 粘弹性体动态力学特性的一种损伤力学模型 [A]//流变学进展 [C]. 武汉: 华中理工大学出版社, 1999: 255-260.
    Losi G U, Knauss W G. Free Volume Theory and Nonlinear Themo-Viscoelasticity [J]. Polym Eng Sci, 1992, 32(8): 542-557.
    O'Connell P A, McKenna G B. Large Deformation Response of Polycarbonate: Time-Temperature, Time-Aging Time, and Time-Strain Superposition [J]. Polym Eng Sci, 1997, 37(9): 1485-1495.
    Williams M L, Landel R F, Ferry J D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids [J]. J Am Chem Soc, 1955, 77(14): 3701.
    Fox T G, Flory P G. Viscosity-Molecular Weight and Viscosity-Temperature Relationships for Polystyrene and Polyisobutylene [J]. J Am Chem Soc, 1948, 70(7): 2384-2395.
    Fox T G, Flory P G. Intrinsic Viscosity-Molecular Weight Relationships for Polyisobutylene [J]. J Phys Chem, 1949, 53(2): 197-212.
    Amirkhizi A V, Isaacs J, McGee J, et al. An Experimentally-Based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects [J]. Philosophical Magazine, 2006, 86(36): 5847-5866.
    Cheng Z Y, Gross S, Su J, et al. Pressure-Temperature Study of Dielectric Relaxation of a Polyurethane Elastomer [J]. J Polym Sci, 1999, 37(10): 983 -990.
    Kasapis S, Sablani S S. The Effect of Pressure on the Structural Properties of Biopolymer/Co-Solute. Part Ⅱ: The Example of Gelling Polysaccharides [J]. Carbohydrate Polymers, 2008, 72(3): 537-544.
    Jiang L G. Marine Ship of 21st Century [M]. Beijing: National Defense Industry Press, 1998: 2-5. (in Chinese)
    姜来根. 21世纪海军航船 [M]. 北京: 国防工业出版社, 1998: 2-5.
    Doolittle A K. Studies in Newton Flow: Ⅱ. The Dependence of the Viscosity of Liquids on Free-Space [J]. J Appl Phys, 1951, 23(2): 236.
    Eisenberg A. The Multidimension Glass Transition [J]. J Phys Chem, 1963, 67: 1333-1336.
    Zhan S P, Chen S H, Zhang X H, et al. A New Method and Equipment of Determining Glass TransitionTemperature of Amorphous Macromolecule Powders [J]. Chemical Engineering, 2007, 35(5): 53-62. (in Chinese)
    詹世平, 陈淑花, 张欣华, 等. 非晶态粉体玻璃化转变温度的测量方法与装置 [J]. 化学工程, 2007, 35(5): 53-62.
    Liu J, Wu S Z, Cao D P, et al. Effects of Pressure on Structure and Dynamics of Model Elastomers: A Molecular Dynamics Study [J]. J Chem Phys, 2008, 129(15): 154905-154911.
  • 加载中
计量
  • 文章访问数:  7651
  • HTML全文浏览量:  439
  • PDF下载量:  846
出版历程
  • 收稿日期:  2009-04-30
  • 修回日期:  2009-08-25
  • 发布日期:  2010-06-15

目录

    /

    返回文章
    返回