基于多尺度分析的FCC金属应变率敏感性研究

秦焜 杨黎明 胡时胜

秦焜, 杨黎明, 胡时胜. 基于多尺度分析的FCC金属应变率敏感性研究[J]. 高压物理学报, 2009, 23(3): 196-202 . doi: 10.11858/gywlxb.2009.03.006
引用本文: 秦焜, 杨黎明, 胡时胜. 基于多尺度分析的FCC金属应变率敏感性研究[J]. 高压物理学报, 2009, 23(3): 196-202 . doi: 10.11858/gywlxb.2009.03.006
QIN Kun, YANG Li-Ming, HU Shi-Sheng. Study on Strain Rate Sensitivities of FCC Metals Based on Multi-Scale Analysis[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 196-202 . doi: 10.11858/gywlxb.2009.03.006
Citation: QIN Kun, YANG Li-Ming, HU Shi-Sheng. Study on Strain Rate Sensitivities of FCC Metals Based on Multi-Scale Analysis[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 196-202 . doi: 10.11858/gywlxb.2009.03.006

基于多尺度分析的FCC金属应变率敏感性研究

doi: 10.11858/gywlxb.2009.03.006
详细信息
    通讯作者:

    秦焜

Study on Strain Rate Sensitivities of FCC Metals Based on Multi-Scale Analysis

More Information
    Corresponding author: QIN Kun
  • 摘要: 采用位错理论和分子动力学模拟研究了金属原子性质对其宏观应变率敏感性的影响。依据位错运动的Orowan关系,认为金属中位错速度对应力的依赖关系是此研究的关键,并分析提出研究金属原子性质与应变率敏感性关系的分析方法。构建了一个中等规模的二维分子动力学模型,应用此模型对单个位错在FCC金属中的运动进行模拟。综合位错理论分析和分子动力学模拟结果得出结论:影响金属应变率敏感性的原子性质是其原子量而不是其原子势。依据此结论分析得到的FCC金属应变率敏感性排序与试验结果相符。

     

  • Hirth J P, Lothe J. Theory of Dislocations [M]. New York: Wiley, 1982: 9-13.
    Hull D, Bacon D J. Introduction to Dislocations [M]. Oxford: Butterworth-Heinemann, 2001: 14-15.
    Lepinoux J, Kubin L P. The Dynamic Organization of Dislocation Structures: A Simulation [J]. Scripta Met, 1987, 21: 833-838.
    Rhee M, Zbib H M, Hirth J P, et al. Models for Long-/Short-Range Interactions and Cross Slip in 3D Simulation of bcc Single Crystals [J]. Model Simul Mater Sci Eng, 1998, 6: 467-492.
    Johnston W G, Gilman J J. Dislocation Velocities, Dislocation Densities and Plastic Flow in Litheium Fluoride Crystals [J]. J App Phys, 1959, 30: 129-144.
    Meyers M A. Dynamic Behavior of Materials [M]. New York: John Wiley Sons, 1994: 330-337.
    Hiratani M, Nadgorny E M. Combined Model of Dislocation Motion with Thermally Activated and Drag-Dependent Stages [J]. Acta Mater, 2001, 49: 4338-4346.
    Chang J, Bulatov V V, Yip S. Molecular Dynamics Study of Edge Dislocation Motion in a bcc Metal [J]. J Comput-Aided Mater Design, 1999, 6: 165-173.
    Gumbsch P, Gao H. Driving Force and Nucleation of Supersonic Dislocations [J]. J Comput-Aided Mater Design, 1999, 6: 137-144.
    Bailey N P, Sethna J P, Myers C R. Dislocation Mobility in Two-Dimensional Lennard-Jones Material [J]. Mater Sci Eng, 2001, A309-310: 152-155.
    Robles M, Perondi L F, Ksaki K. Dynamics of a Dislocation Set in Motion by an External Stress [J]. Int J Modern Phys C, 2002, 13: 97-105.
    Merimaa J, Perondi L F, Kaski K. An Interactive Simulation Program for Visualizing Complex Phenomena in Solids [J]. Comput Phys Commun, 2000, 124: 60-75.
    Lennard-Jones J E. Cohesion [J]. Proc Phys Soc, 1931, 43: 461-482.
    Girifalco L A, Weizer V G. Application of the Morse Potential Function to Cubic Metals [J]. Phys Rev B, 1959, 114: 687-690.
  • 加载中
计量
  • 文章访问数:  8156
  • HTML全文浏览量:  561
  • PDF下载量:  752
出版历程
  • 收稿日期:  2008-05-12
  • 修回日期:  2008-10-13
  • 发布日期:  2009-06-15

目录

    /

    返回文章
    返回