过渡金属锇在高压下的力学特性

刘小妹 梁拥成 宋秋红

刘小妹, 梁拥成, 宋秋红. 过渡金属锇在高压下的力学特性[J]. 高压物理学报, 2008, 22(3): 253-258 . doi: 10.11858/gywlxb.2008.03.005
引用本文: 刘小妹, 梁拥成, 宋秋红. 过渡金属锇在高压下的力学特性[J]. 高压物理学报, 2008, 22(3): 253-258 . doi: 10.11858/gywlxb.2008.03.005
LIU Xiao-Mei, LIANG Yong-Cheng, SONG Qiu-Hong. Mechanical Properties of Transition-Metal Osmium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 253-258 . doi: 10.11858/gywlxb.2008.03.005
Citation: LIU Xiao-Mei, LIANG Yong-Cheng, SONG Qiu-Hong. Mechanical Properties of Transition-Metal Osmium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 253-258 . doi: 10.11858/gywlxb.2008.03.005

过渡金属锇在高压下的力学特性

doi: 10.11858/gywlxb.2008.03.005
详细信息
    通讯作者:

    梁拥成

Mechanical Properties of Transition-Metal Osmium under High Pressure

More Information
    Corresponding author: LIANG Yong-Cheng
  • 摘要: 基于密度泛函理论平面波赝势法的第一性原理计算,研究了过渡金属锇在高压下的状态方程、弹性常数和其它力学性质。 计算结果表明:过渡金属锇具有很高的体积模量B0(423.9 GPa)和弹性常数C11(771.3 GPa)与C33(852.0 GPa),与金刚石的(B0=452.8 GPa,C11=C33=1 082.9 GPa)比较,具有超低压缩特性;表征材料抵抗剪切变形能力的弹性常数C44(269.8 GPa)和切变模量(276.8 GPa)只有金刚石的(C44=586.9 GPa,G=537.5 GPa)一半,而所成的又是纯金属键,因此锇不具有超硬性。最后,定性分析了它的高体积模量和低硬度的微观电子机制,这对于设计与合成新的超硬性材料具有启发意义。

     

  • Cynn H, Klepeis J E, Yoo C S, et al. Osmium Has the Lowest Experimentally Determined Compressibility [J]. Phys Rev Lett, 2002, 88: 135701.
    Occelli F, Farber D L, Badro J, et al. Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium [J]. Phys Rev Lett, 2004, 93: 095502.
    Kenichi T. Bulk Modulus of Osmium: High-Pressure Powder X-Ray Diffraction Experiments under Quasihydrostatic Conditions [J]. Phys Rev B, 2004, 70: 012101.
    Liang Y C, Fang Z. First-Principles Study of Osmium under High-Pressure [J]. J Phys: Condens Matter, 2006, 18: 8749-8759.
    Joshi K D, Jyoti G, Gupta S C. On Compressibility of Osmium Metal [J]. High Pressure Res, 2003, 23(4): 403-408.
    Fast L, Wills J M, Johansson B, et al. Elastic Constants of Hexagonal Transition Metals: Theory [J]. Phys Rev B, 1995, 51: 17431.
    Hebbache M, Zemzemi M. Ab Initio Study of High-Pressure Behavior of a Low Compressibility Metal and a Hard Material: Osmium and Diamond [J]. Phys Rev B, 2004, 70: 224107.
    Ma Y M, Cui T, Zhang L J, et al. Electronic and Crystal Structures of Osmium under High Pressure [J]. Phys Rev B, 2005, 72: 174103.
    Sahu B R, Kleinman L. Osmium Is Not Harder than Diamond [J]. Phys Rev B, 2005, 72: 113106.
    Koudela D, Richter M, Mobius A, et al. Lifshitz Transitions and Elastic Properties of Osmium under Pressure [J]. Phys Rev B, 2006, 74: 214103.
    Chung H Y, Weinberger M B, Levine J B, et al. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure [J]. Science, 2007, 316: 436-439.
    Cumberland R W, Weinberger M B, Gilman J J, et al. Osmium Diboride, an Ultra-Incompressible, Hard Material [J]. J Am Chem Soc, 2005, 127: 7264-7265.
    Gou H Y, Hou L, Zhang J W, et al. First-Principles Study of Low Compressibility Osmium Borides [J]. Appl Phys Lett, 2006, 88: 221904.
    Liang Y C, Guo W L, Fang Z. First-Principles Studies of Low-Compressibility of Transition-Metal Compounds OsB2 and OsO2 [J]. Acta Phys Sin, 2007, 56(8): 4847-4855. (in Chinese)
    梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究 [J]. 物理学报, 2007, 56(8): 4847-4855.
    Fang Z, Terakura K. Structural Distortion and Magnetism in Transition Metal Oxides: Crucial Roles of Orbital Degrees of Freedom [J]. J Phys: Condens Matter, 2002, 14: 3001-3014.
    Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism [J]. Phys Rev B, 1990, 41: 7892.
    Perdew J P, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy [J]. Phys Rev B, 1992, 45: 13244.
    Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Phys Rev Lett, 1996, 77: 3865.
    Perdew J P, Burke K, Wang Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System [J]. Phys Rev B, 1996, 54: 16533.
    Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations [J]. Phys Rev B, 1976, 13: 5188.
    Chen Z Y, Xiang H J, Yang J L, et al. Structural and Electronic Properties of OsB2: A Hard Metallic Material [J]. Phys Rev B, 2006, 74: 012102.
    Birch F. Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline NaCl at High Pressures and 300 K [J]. J Geophys Res, 1978, 83: 1257-1268.
    Occelli F, Loubeyre P, Toullec R L. Properties of Diamond under Hydrostatic Pressures up to 140 GPa [J]. Nat Mater, 2003, 2: 151-154.
    Tse J S, Klug D D, Uehara K, et al. Elastic Properties of Potential Superhard Phases of RuO2 [J]. Phys Rev B, 2000, 61: 10029.
    Zheng J C. Superhard Hexagonal Transition Metal and Its Carbide and Nitride: Os, OsC and OsN [J]. Phys Rev B, 2005, 72: 052105.
    Neumanm G S, Stixrude L, Cohen R E. Absence of Lattice Strain Anomalies at the Electronic Topological Transition in Zinc at High Pressure [J]. Phys Rev B, 2001, 63: 054103.
    Hill R. The Elastic Behavior of a Crystalline Aggregate [J]. Proc Phys Soc London, 1953, 65: 349-354.
    Grossman J C, Mizel A, Cote M, et al. Transition Metals and Their Carbides and Nitrides Trends in Electronic and Structural Properties [J]. Phys Rev B, 1999, 60: 6343.
  • 加载中
计量
  • 文章访问数:  7622
  • HTML全文浏览量:  576
  • PDF下载量:  801
出版历程
  • 收稿日期:  2007-10-10
  • 修回日期:  2008-01-09
  • 发布日期:  2008-09-05

目录

    /

    返回文章
    返回