高应变率拉伸下纯铝中氦泡长大的动力学研究

祁美兰 贺红亮 王永刚 晏石林

祁美兰, 贺红亮, 王永刚, 晏石林. 高应变率拉伸下纯铝中氦泡长大的动力学研究[J]. 高压物理学报, 2007, 21(2): 145-150 . doi: 10.11858/gywlxb.2007.02.005
引用本文: 祁美兰, 贺红亮, 王永刚, 晏石林. 高应变率拉伸下纯铝中氦泡长大的动力学研究[J]. 高压物理学报, 2007, 21(2): 145-150 . doi: 10.11858/gywlxb.2007.02.005
QI Mei-Lan, HE Hong-Liang, WANG Yong-Gang, YAN Shi-Lin. Dynamic Analysis of Helium Bubble Growth in the Pure Al under High Strain-Rate Loading[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145-150 . doi: 10.11858/gywlxb.2007.02.005
Citation: QI Mei-Lan, HE Hong-Liang, WANG Yong-Gang, YAN Shi-Lin. Dynamic Analysis of Helium Bubble Growth in the Pure Al under High Strain-Rate Loading[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145-150 . doi: 10.11858/gywlxb.2007.02.005

高应变率拉伸下纯铝中氦泡长大的动力学研究

doi: 10.11858/gywlxb.2007.02.005
详细信息
    通讯作者:

    贺红亮

Dynamic Analysis of Helium Bubble Growth in the Pure Al under High Strain-Rate Loading

More Information
    Corresponding author: HE Hong-Liang
  • 摘要: 分析了高应变率加载下纯铝中氦泡长大的动力学过程,给出了含内压氦泡长大的动力学方程,并且分别研究了氦泡内压、基体材料惯性、粘性、表面张力以及基体环境温度对初始半径为1 nm氦泡长大的影响。研究结果表明:(1)初始内压可以促使氦泡快速长大,当氦泡直径超过1 m时,内压对氦泡长大的影响可以忽略不计。(2)表面张力在氦泡整个长大过程中的影响都很小。(3)材料惯性对氦泡长大起抑制作用,并且随着氦泡半径的增长,抑制效应越来越明显。(4)在所有因素中,温度对氦泡长大的影响最为明显,温度升高,材料的粘性降低,氦泡的内压增加,促使氦泡加速长大。

     

  • Carroll M M, Holt A C. Static and Dynamic Porecollapse Relations for Ductile Porous Media [J]. J Appl Phys, 1972, 43: 1626-1636.
    Johnson J N. Dynamic Fracture and Spallation in Ductile Solids [J]. J Appl Phys, 1981, 52(4): 2812-2825.
    Wang Z P. Growth of Voids in Porous Ductile Materials at High Strain Rate [J]. J Appl Phys, 1994, 76(3): 1535-1542.
    Zhang F G, Cui Y P, Qin C S, at el. Nucleation and Growth of Voids in Ductile Materials under High Pressure Dynamic Loading [J]. Acta Armamentarii, 2004, 25(6): 730-733. (in Chinese)
    张风国, 崔亚平, 秦承森, 等. 动载荷作用下延性材料的孔洞增长和成核 [J]. 兵工学报, 2004, 25(6): 730-733.
    Zhou H Q, Sun J S, Wang S Y. The Growth of Microvoids in Ductile Materials under Dynamic Loading [J]. Explosion and Shock Waves, 2003, 23(5): 415-419. (in Chinese)
    周洪强, 孙锦山, 王书元. 动载荷下延性材料中微孔洞的增长模型 [J]. 爆炸与冲击, 2003, 23(5): 415-419.
    Poritsky H. The Collapse or Growth of a Spherical Bubble or Cavity in a Viscous Fluid [A]. Cloutier L, Rancourt D. Proc of the First U S National Congress of Applied Mechanics [C]. New York: ASME, 1952: 813-815.
    Seaman L, Curran D R. Inertia and Temperature Effects in Void Growth [A]. Furnish M D, Thadhani N N, Horie Y. Shock Compression of Condensed Matter-2001 [C]. New York: American Institute of Physics, 2002: 607-610.
    Lensky N G, Navon O, Lyakhovsky V. Bubble Growth during Decompression of Magma: Experimental and Theoretical Investigation [J]. Journal of Volcanology and Geothermal Research, 2004, 129: 7-22.
    Donnelly S E. The Density and Pressure of Helium in Bubbles in Implanted Metals [J]. A Critical Review, Radiation effects, 1985, 90: 1-47.
    Seaman L, Curran D R, Shockey D A. Computational Models for Ductile and Brittle Fracture [J]. J Appl Phys, 1976, 47(11): 4814-4826.
    Carroll M M, Kim K T. The Effect of Temperature on Viscoplastic Pore Collapse [J]. J Appl Phys, 1986, 59(6): 1962-1964.
    Curran D R, Seaman L. Dynamic Failure of Solids [J]. Physics Reports, 1987, 147 (56): 303-313.
  • 加载中
计量
  • 文章访问数:  7766
  • HTML全文浏览量:  380
  • PDF下载量:  693
出版历程
  • 收稿日期:  2006-07-25
  • 修回日期:  2006-10-16
  • 发布日期:  2007-06-05

目录

    /

    返回文章
    返回