沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究

邓小良 祝文军 贺红亮 伍登学 经福谦

邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究[J]. 高压物理学报, 2007, 21(1): 59-65 . doi: 10.11858/gywlxb.2007.01.010
引用本文: 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究[J]. 高压物理学报, 2007, 21(1): 59-65 . doi: 10.11858/gywlxb.2007.01.010
DENG Xiao-Liang, ZHU Wen-Jun, HE Hong-Liang, WU Deng-Xue, JING Fu-Qian. Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59-65 . doi: 10.11858/gywlxb.2007.01.010
Citation: DENG Xiao-Liang, ZHU Wen-Jun, HE Hong-Liang, WU Deng-Xue, JING Fu-Qian. Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59-65 . doi: 10.11858/gywlxb.2007.01.010

沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究

doi: 10.11858/gywlxb.2007.01.010
详细信息
    通讯作者:

    祝文军

Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper

More Information
    Corresponding author: ZHU Wen-Jun
  • 摘要: 用分子动力学方法计算模拟了沿〈111〉晶向冲击加载过程中,单晶铜中纳米孔洞(直径约1.3 nm)的演化及其周围区域发生塑性变形的过程。模拟结果表明,在沿〈111〉晶向冲击加载后,在面心立方(fcc)结构中的4族{111}晶面中有3族发生了滑移。伴随孔洞的增长,在所激活的3族{111}晶面上,观察到位错在孔洞表面附近区域成核,然后向外滑移,其中在剪切应力最大的〈112〉方向上,其位错速度超过横波声速,其它〈112〉方向的位错速度低于横波声速。模拟得到的位错阻尼系数范围与实验值基本符合。由于孔洞周围产生的滑移在空间比较对称,孔洞增长形貌接近球形。在恒定的冲击强度下,孔洞半径增长速率近似保持恒定,其速率随着冲击强度的增加而增大。

     

  • Seaman L, Curran D R, Shockey D A. Computational Models for Ductile and Brittle Fracture [J]. J Appl Phys, 1976, 47(11): 4814-4826.
    Carroll M M, Holt A C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials [J]. J Appl Phys, 1972, 43: 1626-1636.
    Zhou S J, Beazley D M, Lomdahl P S, et al. Large-Scale Molecular Dynamics Simulations of Three-Dimensional Ductile Failure [J]. Phys Rev Lett, 1996, 78: 479-482.
    Seppala E T, Belak J, Rudd R E. Onset of Void Coalescence during Dynamic Fracture of Ductile Metals [J]. Phys Rev Lett, 2005, 93: 245503.
    Holian B L, Lomdahl P S. Plasticity Induced by Shock Waves in Nonequilibrium Molecular-Dynamics Simulations [J]. Science, 1998, 280: 2085-2088.
    Yamakov V, Saether E, Philips D R, et al. Dynamic Instability in Intergranular Fracture [J]. Phys Rev Lett, 2005, 95: 015502.
    Davila L P, Erhart P, Bringa E M, et al. Atomistic Modeling of Shock-Induced Void Collapse in Copper [J]. Appl Phys Lett, 2005, 86: 161902.
    Lubarda V A, Schneider M S, Kalantar D H, et al. Void Growth by Dislocation Emission [J]. Acta Mater, 2004, 52: 1397-1408.
    Marian J, Knap J, Ortiz M. Nanovoid Cavitation by Dislocation Emission in Aluminum [J]. Phys Rev Lett, 2004, 93: 165503.
    Rauf G M, Maroudas D. Atomistic Mechanism of Strain Relaxation due to Ductile Void Growth in Ultrathin Films of Face-Centered-Cubic Metals [J]. J Appl Phys, 2005, 97: 113527.
    Luo J, Zhu W J, Lin L B, et al. Molecular Dynamics Simulation of Void Growth in Single Crystal Copper under Uniaxial Impacting [J]. Acta Phys Sin, 2005, 54: 2791-2798. (in Chinese)
    罗晋, 祝文军, 林理彬, 等. 单晶铜在动态加载下空洞增长的分子动力学研究 [J]. 物理学报, 2005, 54: 2791-2798.
    Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations [J]. Phys Rev B, 2001, 63: 224106.
    Bringa E M, Cazamias J U, Erhart P, et al. Atomistic Shock Hugoniot Simulation of Single-Crystal Copper [J]. J Appl Phys, 2004, 96: 3793-3798.
    Wan F R. Radiation Damage of Metals [M]. Beijing: Science Press, 1993: 101-102. (in Chinese)
    万发荣. 金属材料的辐照损伤 [M]. 北京: 科学出版社, 1993: 101-102.
    Curran D R, Seaman L. Dynamic Failure of Solids [J]. Physical Reports, 1987, 147: 253-388.
    Hoover W G. Computational Statistical Mechanics [M]. Netherlands Elsevier: Science Publishers B V, 1991: 140-145.
    Zhou S J, Preston D L, Lomdahl P S, et al. Large-Scale Molecular Dynamics Simulations of Dislocation Intersection in Copper [J]. Science, 1998, 279: 1525-1527.
    Hirth J P, Loyhe J. Theory of Dislocations [M]. New York: Wiley, 1982: 267-275.
    Gumbsch P, Gao H J. Dislocations Faster than the Speed of Sound [J]. Science, 1999, 283: 965-968.
    Jones O E, Mote J D. Shock-Induced Dynamic Yielding in Copper Single Crystals [J]. J Appl Phys, 1969, 40: 4920-4928.
    Mordehai D, Ashkenazy Y, Kelson I. Dynamic Properties of Screw Dislocations in Cu: A Molecular Dynamics Study [J]. Phys Rev B, 2003, 7: 024112.
    Clarke A S, Jonsson H. Structural Changes Accompanying Densification of Random Hard-Sphere Packings [J]. Phys Rev E, 1991, 47: 3975-3984.
  • 加载中
计量
  • 文章访问数:  7444
  • HTML全文浏览量:  288
  • PDF下载量:  793
出版历程
  • 收稿日期:  2005-11-15
  • 修回日期:  2006-02-26
  • 发布日期:  2007-03-05

目录

    /

    返回文章
    返回